ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset
ContributorsATLAS Collaboration
CollaboratorsAdorni Braccesi Chiassi, Sofia
; Antel, Claire; Axiotis, Konstantinos; Clark, Allan Geoffrey; Della Volpe, Domenico; Drozdova, Mariia; Ehrke, Lukas; Ferrere, Didier; Franchellucci, Stefano; Golling, Tobias; Gonzalez Sevilla, Sergio; Guth, Manuel; Harada, Daigo; Iacobucci, Giuseppe; Iizawa, Tomoya; Klein, Samuel
; Leigh, Matthew; Moreno Martinez, Carlos; Nessi, Marzio; Nindhito, Herjuno Rah; Paolozzi, Lorenzo; Quetant, Guillaume; Raine, Johnny; Rizzi, Chiara; Sabater Iglesias, Jorge; Schramm, Steven; Sengupta, Debajyoti
; Sfyrla, Anna; Theiner, Ondrej; Wu, Xin; Zambito, Stefano; Zoch, Knut
Published inEuropean physical journal. C, Particles and fields, vol. 83, no. 7, 681
Publication date2023
First online date2023-07-31
Abstract
Keywords
- P p: scattering
- Efficiency
- ATLAS
- Performance
- Neural network
- Data analysis method
- Numerical calculations
- Bottom particle: particle identification
- Charmed particle: particle identification
Citation (ISO format)
ATLAS Collaboration. ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset. In: European physical journal. C, Particles and fields, 2023, vol. 83, n° 7, p. 681. doi: 10.1140/epjc/s10052-023-11699-1
Main files (1)
Article (Published version)
Identifiers
- PID : unige:177825
- DOI : 10.1140/epjc/s10052-023-11699-1
- arXiv : 2211.16345
Additional URL for this publicationhttps://link.springer.com/10.1140/epjc/s10052-023-11699-1
Journal ISSN1434-6044