UNIGE document Scientific Article
previous document  unige:9771  next document
add to browser collection
Title

Sur un théorème de Catselnuovo

Authors
Pan, Yvan
Published in Bulletin of the Brazilian Mathematical Society. 2008, vol. 39, no. 1, p. 61-80
Abstract We continue the study of G. Castelnuovo on the group of birational transformations of the complex plane that fix each point of a curve of genus > 1 ; we use adjoint linear system of the curve as Castelnuovo does. We prove that these groups are abelian, and that these are either finite, of order 2 or 3, or conjuguate to a subgroup of the de Jonquières group. We show also that these results do not generalise to curves of genus ≤ 1.
Keywords Cremona transformationsBirational transformationsFixed curvesCurves of high genusAdjoint linear systemDe Jonquières transformations
Identifiers
Full text
Article (241 Kb) - public document Free access
Structures
Citation
(ISO format)
BLANC, Jeremy, PAN, Yvan, VUST, Thierry. Sur un théorème de Catselnuovo. In: Bulletin of the Brazilian Mathematical Society, 2008, vol. 39, n° 1, p. 61-80. https://archive-ouverte.unige.ch/unige:9771

172 hits

57 downloads

Update

Deposited on : 2010-07-29

Export document
Format :
Citation style :