UNIGE document Scientific Article
previous document  unige:43127  next document
add to browser collection
Title

Antiproton induced DNA damage: proton like in flight, carbon-ion like near rest

Authors
Kavanagh, J N
Currell, F J
Timson, D J
Savage, K I
Richard, D J
McMahon, S J
Cirrone, G A P
show hidden authors show all authors [1 - 13]
Published in Scientific Reports. 2013, vol. 3, p. 1770
Abstract Biological validation of new radiotherapy modalities is essential to understand their therapeutic potential. Antiprotons have been proposed for cancer therapy due to enhanced dose deposition provided by antiproton-nucleon annihilation. We assessed cellular DNA damage and relative biological effectiveness (RBE) of a clinically relevant antiproton beam. Despite a modest LET (~19 keV/μm), antiproton spread out Bragg peak (SOBP) irradiation caused significant residual γ-H2AX foci compared to X-ray, proton and antiproton plateau irradiation. RBE of ~1.48 in the SOBP and ~1 in the plateau were measured and used for a qualitative effective dose curve comparison with proton and carbon-ions. Foci in the antiproton SOBP were larger and more structured compared to X-rays, protons and carbon-ions. This is likely due to overlapping particle tracks near the annihilation vertex, creating spatially correlated DNA lesions. No biological effects were observed at 28-42 mm away from the primary beam suggesting minimal risk from long-range secondary particles.
Keywords Carbon/chemistry/pharmacologyCell Survival/radiation effectsCells, CulturedDNA DamageHumansIons/pharmacologyProtonsRadiotherapy/methodsRadiotherapy DosageRelative Biological EffectivenessX-Rays
Identifiers
PMID: 23640660
Full text
Article (Published version) (2 MB) - public document Free access
Structures
Research group Hiv (835)
Citation
(ISO format)
KAVANAGH, J N et al. Antiproton induced DNA damage: proton like in flight, carbon-ion like near rest. In: Scientific Reports, 2013, vol. 3, p. 1770. https://archive-ouverte.unige.ch/unige:43127

173 hits

33 downloads

Update

Deposited on : 2014-12-11

Export document
Format :
Citation style :