UNIGE document Scientific Article
previous document  unige:35678  next document
add to browser collection

Early dark energy from zero-point quantum fluctuations

Published in Physics Letters. B. 2011, vol. 704, no. 3, p. 102-107
Abstract We examine a cosmological model with a dark energy density of the form ρDE(t)=ρX(t)+ρZ(t)ρDE(t)=ρX(t)+ρZ(t), where ρXρX is the component that accelerates the Hubble expansion at late times and ρZ(t)ρZ(t) is an extra contribution proportional to H2(t)H2(t). This form of ρZ(t)ρZ(t) follows from the recent proposal that the contribution of zero-point fluctuations of quantum fields to the total energy density should be computed by subtracting the Minkowski-space result from that computed in the FRW space–time. We discuss theoretical arguments that support this subtraction. By definition, this eliminates the quartic divergence in the vacuum energy density responsible for the cosmological constant problem. We show that the remaining quadratic divergence can be reabsorbed into a redefinition of Newtonʼs constant only under the assumption that ∇μ〈0|Tμν|0〉=0∇μ〈0|Tμν|0〉=0, i.e. that the energy–momentum tensor of vacuum fluctuations is conserved in isolation. However in the presence of an ultra-light scalar field X with mX<H0mX<H0, as typical of some dark energy models, the gravity effective action depends both on the gravitational field and on the X field. In this case general covariance only requires ∇μ(TμνX+〈0|Tμν|0〉). If there is an exchange of energy between these two terms, there are potentially observable consequences. We construct an explicit model with an interaction between ρXρX and ρZρZ and we show that the total dark energy density ρDE(t)=ρX(t)+ρZ(t)ρDE(t)=ρX(t)+ρZ(t) always remains a finite fraction of the critical density at any time, providing a specific model of early dark energy. We discuss the implication of this result for the coincidence problem and we estimate the model parameters by means of a full likelihood analysis using current CMB, SNe Ia and BAO data
Keywords Early dark energyCosmological constantVacuum fluctuations
Full text
(ISO format)
MAGGIORE, Michele et al. Early dark energy from zero-point quantum fluctuations. In: Physics Letters. B, 2011, vol. 704, n° 3, p. 102-107. doi: 10.1016/j.physletb.2011.09.010 https://archive-ouverte.unige.ch/unige:35678

356 hits

0 download


Deposited on : 2014-04-14

Export document
Format :
Citation style :