UNIGE document Scientific Article
previous document  unige:30571  next document
add to browser collection
Title

Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality

Authors
Simola, Daniel F
Wissler, Lothar
Donahue, Greg
Helmkampf, Martin
Roux, Julien
Nygaard, Sanne
Glastad, Karl M
show hidden authors show all authors [1 - 38]
Published in Genome Research. 2013, vol. 23, no. 8, p. 1235-47
Abstract Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor-binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the "socio-genomes" of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations.
Identifiers
PMID: 23636946
Full text
Article (Published version) (1.7 MB) - document accessible for UNIGE members only Limited access to UNIGE
Structures
Research group Génomique Evolutionnaire Computationnelle (830)
Citation
(ISO format)
SIMOLA, Daniel F et al. Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality. In: Genome Research, 2013, vol. 23, n° 8, p. 1235-47. https://archive-ouverte.unige.ch/unige:30571

196 hits

0 download

Update

Deposited on : 2013-10-22

Export document
Format :
Citation style :