Scientific Article
previous document  unige:24699  next document
add to browser collection
Title

Autoactivation of Transforming Growth Factor β-activated Kinase 1 Is a Sequential Bimolecular Process

Authors
Scholz, R.
Sidler, C. L.
Thali, R. F.
Cheung, P. C. F.
Neumann, D.
Published in Journal of Biological Chemistry. 2010, vol. 285, no. 33, p. 25753-25766
Abstract Transforming growth factor-β-activated kinase 1 (TAK1), an MAP3K, is a key player in processing a multitude of inflammatory stimuli. TAK1 autoactivation involves the interplay with TAK1-binding proteins (TAB), e.g. TAB1 and TAB2, and phosphorylation of several activation segment residues. However, the TAK1 autoactivation is not yet fully understood on the molecular level due to the static nature of available x-ray structural data and the complexity of cellular systems applied for investigation. Here, we established a bacterial expression system to generate recombinant mammalian TAK1 complexes. Co-expression of TAK1 and TAB1, but not TAB2, resulted in a functional and active TAK1-TAB1 complex capable of directly activating full-length heterotrimeric mammalian AMP-activated protein kinase (AMPK) in vitro. TAK1-dependent AMPK activation was mediated via hydrophobic residues of the AMPK kinase domain αG-helix as observed in vitro and in transfected cell culture. Co-immunoprecipitation of differently epitope-tagged TAK1 from transfected cells and mutation of hydrophobic αG-helix residues in TAK1 point to an intermolecular mechanism of TAB1-induced TAK1 autoactivation, as TAK1 autophosphorylation of the activation segment was impaired in these mutants. TAB1 phosphorylation was enhanced in a subset of these mutants, indicating a critical role of αG-helix residues in this process. Analyses of phosphorylation site mutants of the activation segment indicate that autophosphorylation of Ser-192 precedes TAB1 phosphorylation and is followed by sequential phosphorylation of Thr-178, Thr-187, and finally Thr-184. Finally, we present a model for the chronological order of events governing TAB1-induced TAK1 autoactivation.
Identifiers
Full text
Article (Published version) (1.4 MB) - document accessible for UNIGE members only Limited access to UNIGE
Other version: http://www.jbc.org/cgi/doi/10.1074/jbc.M109.093468
Citation
(ISO format)
SCHOLZ, R. et al. Autoactivation of Transforming Growth Factor β-activated Kinase 1 Is a Sequential Bimolecular Process. In: Journal of Biological Chemistry, 2010, vol. 285, n° 33, p. 25753-25766. https://archive-ouverte.unige.ch/unige:24699

106 hits

1 download

Update

Deposited on : 2012-12-18

Export document
Format :
Citation style :