Scientific article

Robustness Aspects of Model Choice

ContributorsRonchetti, Elvezioorcid
Published inStatistica sinica, vol. 7, p. 327-338
Publication date1997

Model selection is a key component in any statistical analysis. In this paper we discuss this issue from the point of view of robustness and we point out the extreme sensitivity of many classical model selection procedures to outliers and other departures from the distributional assumptions of the model. First, we focus on regression and review a robust version of Mallows's Cp as well as some related approaches. We then go beyond the regression model and discuss a robust version of the Akaike Information Criterion for general parametric models.

  • Akaike criterion
  • Autoregressive models
  • Competing models
  • Crossvalidation
  • Diagnostics
  • Information theory
  • Mallows's Cp
  • M-estimators
  • Non-nested hypotheses
  • Outliers
  • Robust Akaike criterion
  • Robust Cp
  • Robust regression
  • Robust tests
  • Schwartz criterion
  • Time series
  • Variable selection
  • Weighted prediction error
Citation (ISO format)
RONCHETTI, Elvezio. Robustness Aspects of Model Choice. In: Statistica sinica, 1997, vol. 7, p. 327–338.
  • PID : unige:23221
ISSN of the journal1017-0405

Technical informations

Creation10/01/2012 10:59:00 AM
First validation10/01/2012 10:59:00 AM
Update time03/14/2023 5:42:07 PM
Status update03/14/2023 5:42:07 PM
Last indexation10/18/2023 2:42:46 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack