UNIGE document Scientific Article
previous document  unige:2127  next document
add to browser collection
Title

Intra-deme molecular diversity in spatially expanding populations

Authors
Published in Molecular Biology and Evolution. 2003, vol. 20, no. 1, p. 76-86
Abstract We report here a simulation study examining the effect of a recent spatial expansion on the pattern of molecular diversity within a deme. We first simulate a range expansion in a virtual world consisting in a two-dimensional array of demes exchanging a given proportion of migrants (m) with their neighbors. The recorded demographic and migration histories are then used under a coalescent approach to generate the genetic diversity in a sample of genes. We find that the shape of the gene genealogies and the overall pattern of diversity within demes depend not only on the age of the expansion but also on the level of gene flow between neighboring demes, as measured by the product Nm, where N is the size of a deme. For small Nm values (< approximately 20 migrants sent outwards per generation), a substantial proportion of coalescent events occur early in the genealogy, whereas with larger levels of gene flow, most coalescent events occur around the time of the onset of the spatial expansion. Gene genealogies are star shaped, and mismatch distributions are unimodal after a range expansion for large Nm values. In contrast, gene genealogies present a mixture of both very short and very long branch lengths, and mismatch distributions are multimodal for small Nm values. It follows that statistics used in tests of selective neutrality like Tajima's D statistic or Fu's F(S) statistic will show very significant negative values after a spatial expansion only in demes with high Nm values. In the context of human evolution, this difference could explain very simply the fact that analyses of samples of mitochondrial DNA sequences reveal multimodal mismatch distributions in hunter-gatherers and unimodal distributions in post-Neolithic populations. Indeed, the current simulations show that a recent increase in deme size (resulting in a larger Nm value) is sufficient to prevent recent coalescent events and thus lead to unimodal mismatch distributions, even if deme sizes (and therefore Nm values) were previously much smaller. The fact that molecular diversity within deme is so dependent on recent levels of gene flow suggests that it should be possible to estimate Nm values from samples drawn from a single deme.
Keywords AnimalsMolecular EvolutionGenetic VariationPopulation GeneticsGeographyHumansGenetic ModelsPhylogenyGenetic Polymorphism
Identifiers
PMID: 12519909
Full text
Article (Author postprint) (1.1 MB) - document accessible for UNIGE members only Limited access to UNIGE
Structures
Research group Unité d’anthropologie
Citation
(ISO format)
RAY, Nicolas, CURRAT, Mathias, EXCOFFIER, Laurent Georges Louis. Intra-deme molecular diversity in spatially expanding populations. In: Molecular Biology and Evolution, 2003, vol. 20, n° 1, p. 76-86. https://archive-ouverte.unige.ch/unige:2127

248 hits

1 download

Update

Deposited on : 2009-06-22

Export document
Format :
Citation style :