en
Scientific article
Open access
English

Multi-centre classification of functional neurological disorders based on resting-state functional connectivity

Published inNeuroImage. Clinical, vol. 35, 103090
Publication date2022
Abstract

Background: Patients suffering from functional neurological disorder (FND) experience disabling neurological symptoms not caused by an underlying classical neurological disease (such as stroke or multiple sclerosis). The diagnosis is made based on reliable positive clinical signs, but clinicians often require additional time- and cost consuming medical tests and examinations. Resting-state functional connectivity (RS FC) showed its potential as an imaging-based adjunctive biomarker to help distinguish patients from healthy controls and could represent a "rule-in" procedure to assist in the diagnostic process. However, the use of RS FC depends on its applicability in a multi-centre setting, which is particularly susceptible to inter-scanner variability. The aim of this study was to test the robustness of a classification approach based on RS FC in a multi-centre setting.

Methods: This study aimed to distinguish 86 FND patients from 86 healthy controls acquired in four different centres using a multivariate machine learning approach based on whole-brain resting-state functional connectivity. First, previously published results were replicated in each centre individually (intra-centre cross-validation) and its robustness across inter-scanner variability was assessed by pooling all the data (pooled cross-validation). Second, we evaluated the generalizability of the method by using data from each centre once as a test set, and the data from the remaining centres as a training set (inter-centre cross-validation).

Results: FND patients were successfully distinguished from healthy controls in the replication step (accuracy of 74%) as well as in each individual additional centre (accuracies of 73%, 71% and 70%). The pooled cross validation confirmed that the classifier was robust with an accuracy of 72%. The results survived post-hoc adjustment for anxiety, depression, psychotropic medication intake, and symptom severity. The most discriminant features involved the angular- and supramarginal gyri, sensorimotor cortex, cingular- and insular cortex, and hippocampal regions. The inter-centre validation step did not exceed chance level (accuracy below 50%).

Conclusions: The results demonstrate the applicability of RS FC to correctly distinguish FND patients from healthy controls in different centres and its robustness against inter-scanner variability. In order to generalize its use across different centres and aim for clinical application, future studies should work towards optimization of acquisition parameters and include neurological and psychiatric control groups presenting with similar symptoms.

eng
Keywords
  • Biomarker
  • Conversion disorder
  • Functional connectivity
  • Inter-scanner variability
  • Multi-site
  • Brain / diagnostic imaging
  • Brain / physiopathology
  • Case-Control Studies
  • Conversion Disorder / diagnostic imaging
  • Conversion Disorder / physiopathology
  • Humans
  • Magnetic Resonance Imaging / methods
  • Reproducibility of Results
Citation (ISO format)
WEBER, Samantha et al. Multi-centre classification of functional neurological disorders based on resting-state functional connectivity. In: NeuroImage. Clinical, 2022, vol. 35, p. 103090. doi: 10.1016/j.nicl.2022.103090
Main files (1)
Article (Published version)
Secondary files (1)
Identifiers
ISSN of the journal2213-1582
21views
10downloads

Technical informations

Creation10/29/2023 1:34:24 PM
First validation03/15/2024 9:15:30 AM
Update time03/15/2024 9:15:30 AM
Status update03/15/2024 9:15:30 AM
Last indexation05/06/2024 6:10:31 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack