Scientific article
Open access

Increased stability upon heptamerization of the pore-forming toxin aerolysin

Published inThe Journal of biological chemistry, vol. 274, no. 51, p. 36722-36728
Publication date1999-12-17

Aerolysin is a bacterial pore-forming toxin that is secreted as an inactive precursor, which is then processed at its COOH terminus and finally forms a circular heptameric ring which inserts into membranes to form a pore. We have analyzed the stability of the precursor proaerolysin and the heptameric complex. Equilibrium unfolding induced by urea and guanidinium hydrochloride was monitored by measuring the intrinsic tryptophan fluorescence of the protein. Proaerolysin was found to unfold in two steps corresponding to the unfolding of the large COOH-terminal lobe followed by the unfolding of the small NH2-terminal domain. We show that proaerolysin contains two disulfide bridges which strongly contribute to the stability of the toxin and protect it from proteolytic attack. The stability of aerolysin was greatly enhanced by polymerization into a heptamer. Two regions of the protein, corresponding to amino acids 180-307 and 401-427, were indentified, by limited proteolysis, NH2-terminal sequencing and matrix-assisted laser desorption ionization-time of flight, as being responsible for stability and maintenance of the heptamer. These regions are presumably involved in monomer/monomer interactions in the heptametric protein and are exclusively composed of β structure. The stability of the aerolysin heptamer is reminiscent of that of pathogenic, fimbrial protein aggregates found in a variety of neurodegenerative diseases.

Citation (ISO format)
LESIEUR, Claire et al. Increased stability upon heptamerization of the pore-forming toxin aerolysin. In: The Journal of biological chemistry, 1999, vol. 274, n° 51, p. 36722–36728. doi: 10.1074/jbc.274.51.36722
Main files (1)
Article (Published version)
ISSN of the journal0021-9258

Technical informations

Creation02/06/2023 9:18:00 AM
First validation02/06/2023 9:18:00 AM
Update time03/16/2023 10:35:39 AM
Status update03/16/2023 10:35:38 AM
Last indexation08/31/2023 10:34:48 AM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack