Scientific article
Open access

Taxonomically Informed Scoring Enhances Confidence in Natural Products Annotation

Publication date2019-10-25
First online date2019-10-25

Mass spectrometry (MS) offers unrivalled sensitivity for the metabolite profiling of complex biological matrices encountered in natural products (NP) research. The massive and complex sets of spectral data generated by such platforms require computational approaches for their interpretation. Within such approaches, computational metabolite annotation automatically links spectral data to candidate structures via a score, which is usually established between the acquired data and experimental or theoretical spectral databases (DB). This process leads to various candidate structures for each MS features. However, at this stage, obtaining high annotation confidence level remains a challenge notably due to the extensive chemodiversity of specialized metabolomes. The design of a metascore is a way to capture complementary experimental attributes and improve the annotation process. Here, we show that integrating the taxonomic position of the biological source of the analyzed samples and candidate structures enhances confidence in metabolite annotation. A script is proposed to automatically input such information at various granularity levels (species, genus, and family) and complement the score obtained between experimental spectral data and output of available computational metabolite annotation tools (ISDB-DNP, MS-Finder, Sirius). In all cases, the consideration of the taxonomic distance allowed an efficient re-ranking of the candidate structures leading to a systematic enhancement of the recall and precision rates of the tools (1.5- to 7-fold increase in the F1 score). Our results clearly demonstrate the importance of considering taxonomic information in the process of specialized metabolites annotation. This requires to access structural data systematically documented with biological origin, both for new and previously reported NPs. In this respect, the establishment of an open structural DB of specialized metabolites and their associated metadata, particularly biological sources, is timely and critical for the NP research community.

  • Chemotaxonomy
  • Computational metabolomics
  • Metabolite annotation
  • Natural products
  • Scoring system
  • Specialized metabolome
  • Taxonomic distance
Citation (ISO format)
RUTZ, Adriano et al. Taxonomically Informed Scoring Enhances Confidence in Natural Products Annotation. In: Frontiers in plant science, 2019. doi: 10.3389/fpls.2019.01329
Main files (1)
Article (Published version)
ISSN of the journal1664-462X

Technical informations

Creation04/14/2022 7:57:00 PM
First validation04/14/2022 7:57:00 PM
Update time03/16/2023 6:30:27 AM
Status update03/16/2023 6:30:26 AM
Last indexation08/31/2023 8:23:27 AM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack