Scientific article
OA Policy
English

Integrating Phenotypic Search and Phosphoproteomic Profiling of Active Kinases for Optimization of Drug Mixtures for RCC Treatment

Published inCancers, vol. 12, no. 9, 2697
Publication date2020
Abstract

Combined application of multiple therapeutic agents presents the possibility of enhanced efficacy and reduced development of resistance. Definition of the most appropriate combination for any given disease phenotype is challenged by the vast number of theoretically possible combinations of drugs and doses, making extensive empirical testing a virtually impossible task. We have used the streamlined-feedback system control (s-FSC) technique, a phenotypic approach, which converges to optimized drug combinations (ODC) within a few experimental steps. Phosphoproteomics analysis coupled to kinase activity analysis using the novel INKA (integrative inferred kinase activity) pipeline was performed to evaluate ODC mechanisms in a panel of renal cell carcinoma (RCC) cell lines. We identified different ODC with up to 95% effectivity for each RCC cell line, with low doses (ED5-25) of individual drugs. Global phosphoproteomics analysis demonstrated inhibition of relevant kinases, and targeting remaining active kinases with additional compounds improved efficacy. In addition, we identified a common RCC ODC, based on kinase activity data, to be effective in all RCC cell lines under study. Combining s-FSC with a phosphoproteomic profiling approach provides valuable insight in targetable kinase activity and allows for the identification of superior drug combinations for the treatment of RCC.

Keywords
  • RCC
  • carcinoma
  • combination treatment
  • drug-drug interactions
  • drug-target interaction
  • synergy.
NoteThis article belongs to the Special Issue Combination Therapies in Cancers
Citation (ISO format)
VAN BEIJNUM, Judy R et al. Integrating Phenotypic Search and Phosphoproteomic Profiling of Active Kinases for Optimization of Drug Mixtures for RCC Treatment. In: Cancers, 2020, vol. 12, n° 9, p. 2697. doi: 10.3390/cancers12092697
Main files (1)
Article (Published version)
Identifiers
Journal ISSN2072-6694
245views
115downloads

Technical informations

Creation01/10/2020 15:17:00
First validation01/10/2020 15:17:00
Update time15/03/2023 23:23:56
Status update15/03/2023 23:23:55
Last indexation31/10/2024 20:26:52
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack