Scientific article
Open access

Insights on the Structural and Metabolic Resistance of Potato (Solanum tuberosum) Cultivars to Tuber Black Dot (Colletotrichum coccodes)

Published inFrontiers in Plant Science, vol. 11, no. 1287
Publication date2020

Black dot is a blemish disease of potato tubers caused by the phytopathogenic fungus Colletotrichum coccodes. Qualitative resistance (monogenic) that leads to the hypersensitive response has not been reported against black dot, but commercial potato cultivars show different susceptibility levels to the disease, indicating that quantitative resistance (polygenic) mechanisms against this pathogen exist. Cytological studies are essential to decipher pathogen colonization of the plant tissue, and untargeted metabolomics has been shown effective in highlighting resistance-related metabolites in quantitative resistance. In this study, we used five commercial potato cultivars with different susceptibility levels to black dot, and studied the structural and biochemical aspects that correlate with resistance to black dot using cytological and untargeted metabolomics methods. The cytological approach using semithin sections of potato tuber periderm revealed that C. coccodes colonizes the tuber periderm, but does not penetrate in cortical cells. Furthermore, skin thickness did not correlate with disease susceptibility, indicating that other factors influence quantitative resistance to black dot. Furthermore, suberin amounts did not correlate with black dot severity, and suberin composition was similar between the five potato cultivars studied. On the other hand, the untargeted metabolomics approach allowed highlighting biomarkers of infection, as well as constitutive and induced resistance-related metabolites. Hydroxycinnamic acids, hydroxycinnamic acid amides and steroidal saponins were found to be biomarkers of resistance under control conditions, while hydroxycoumarins were found to be specifically induced in the resistant cultivars. Notably, some of these biomarkers showed antifungal activity in vitro against C. coccodes. Altogether, our results show that quantitative resistance of potatoes to black dot involves structural and biochemical mechanisms, including the production of specialized metabolites with antifungal properties.

  • Solanum tuberosum
  • Black dot (Colletotrichum coccodes)
  • Hydroxycinnamic acid amide
  • Metabolomics
  • Phellem
  • Quantitative resistance
  • Steroid derivative.
Citation (ISO format)
MASSANA CODINA, Josep et al. Insights on the Structural and Metabolic Resistance of Potato (Solanum tuberosum) Cultivars to Tuber Black Dot (Colletotrichum coccodes). In: Frontiers in Plant Science, 2020, vol. 11, n° 1287. doi: 10.3389/fpls.2020.01287
Main files (1)
Article (Published version)
ISSN of the journal1664-462X

Technical informations

Creation10/29/2020 4:40:00 PM
First validation10/29/2020 4:40:00 PM
Update time03/15/2023 10:54:06 PM
Status update03/15/2023 10:54:06 PM
Last indexation05/05/2024 5:24:33 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack