UNIGE document Scientific Article
previous document  unige:104610  next document
add to browser collection

The influence of bottom boundary layer hydrodynamics on sediment focusing in a contaminated bay

Bouffard, Damien
Published in Environmental science and pollution research international. 2016, vol. 23, no. 24, p. 25412-25426
Abstract Understanding the dynamics and fate of particle bound contaminants is important for mitigating potential environmental, economic and health impacts linked to their presence. Vidy Bay, Lake Geneva (Switzerland), is contaminated due to the outfall and overflow from the wastewater treatment plant of the City of Lausanne. This study was designed to investigate the fate of particle-bound contaminants with the goal of providing a more complete picture of contaminant pathways within the bay and their potential spread to the main basin. This goal was achieved by investigating the sediment transport dynamics, using sediment traps and radionuclide tracers, and ascertaining how local bottom-boundary hydrodynamic conditions (temperature, turbidity, current velocity and direction) influence these dynamics. Results of the study indicated that sedimentation rates and lateral advections increased vertically with proximity to the lakebed and laterally with proximity to shore, indicating the presence of sediment focusing in the bay. Hydrodynamic measurements showed the persistent influence of a gyre within the bay, extending down to the lake bed, while just outside of the bay circulation was influenced by the seasonal patterns of the main basin. Calculated mean displacement distances in the bay indicated that suspended particles can travel ∼3 km per month, which is 1.7 times the width of the Vidy Bay gyre. This results in a residence time of approximately 21 days for suspended particles, which is much greater than previously modelled results. The calculated mobility Shield parameter never exceeded the threshold shear stress needed for resuspension in deeper parts of the bay. In such, increased lateral advections to the bay are not likely due to local resuspension but rather external particle sources, such as main basin or shallow, littoral resuspensions. These external sources coupled with an increased residence time and decreased current velocity within the bay are the precipitating factors in sediment focusing. While the spread of contaminants from the bay may occur through the transport of fine suspended sediments in shallower zones of the bay (<60 m) by longshore littoral currents, results suggest that particle-bound contaminants are likely to remain within the bay.
Keywords Sediment transportContaminantRadionuclideHydrodynamicsBottom boundary layerGyre
Full text
Article (Published version) (1.5 MB) - document accessible for UNIGE members only Limited access to UNIGE
Supplemental data (246 Kb) - document accessible for UNIGE members only Limited access to UNIGE
Other version: http://link.springer.com/10.1007/s11356-016-7715-9
Research groups ISE Eau
ISE Pôle Sciences
Limnology and Environmental Geology
FNS: PDFMP2-123034
(ISO format)
GRAHAM, Neil, BOUFFARD, Damien, LOIZEAU, Jean-Luc. The influence of bottom boundary layer hydrodynamics on sediment focusing in a contaminated bay. In: Environmental Science and Pollution Research, 2016, vol. 23, n° 24, p. 25412-25426. doi: 10.1007/s11356-016-7715-9 https://archive-ouverte.unige.ch/unige:104610

322 hits

0 download


Deposited on : 2018-05-22

Export document
Format :
Citation style :