Scientific Article
previous document  unige:10227  next document
add to browser collection

Muscle tissue adaptations of high-altitude natives to training in chronic hypoxia or acute normoxia

Desplanches, D.
Hoppeler, H.
Tuscher, L.
Mayet, M. H.
Spielvogel, H.
Leuenberger, M.
show hidden authors show all authors [1 - 10]
Published in Journal of Applied Physiology: Respiratory, Environmental & Exercise Physiology. 1996, vol. 81, no. 5, p. 1946-1951
Abstract Twenty healthy high-altitude natives, residents of La Paz, Bolivia (3,600 m), participated in 6 wk of endurance exercise training on bicycle ergometers, 5 times/wk, 30 min/session, as previously described in normoxia-trained sea-level natives (H. Hoppeler, H. Howald, K. E. Conley, S. L. Lindstedt, H. Claassen, P. Vock, and E. R. Weibel. J. Appl. Physiol. 59: 320-327, 1985). A first group of 10 subjects was trained in chronic hypoxia (HT; barometric pressure = 500 mmHg; inspired O2 fraction = 0.209); a second group of 10 subjects was trained in acute normoxia (NT; barometric pressure = 500 mmHg; inspired O2 fraction = 0.314). The workloads were adjusted to approximately 70% of peak O2 consumption (VO2peak) measured either in hypoxia for the HT group or in normoxia for the NT group. VO2peak determination and biopsies of the vastus lateralis muscle were taken before and after the training program. VO2peak in the HT group was increased (14%) in a way similar to that in NT sea-level natives with the same protocol. Moreover, VO2peak in the NT group was not further increased by additional O2 delivery during the training session. HT or NT induced similar increases in muscle capillary-to-fiber ratio (26%) and capillary density (19%) as well as in the volume density of total mitochondria and citrate synthase activity (45%). It is concluded that high-altitude natives have a reduced capillarity and muscle tissue oxidative capacity; however, their training response is similar to that of sea-level residents, independent of whether training is carried out in hypobaric hypoxia or hypobaric normoxia.
Keywords Acclimatization/ physiologyAdultAltitudeAnoxia/ physiopathologyCapillaries/physiology/ultrastructureChronic DiseaseHistocytochemistryHumansMaleMicroscopy, ElectronMuscle Fibers, Skeletal/physiology/ultrastructureMuscle, Skeletal/metabolism/ physiology/ultrastructureOxygen Consumption/physiologyPhysical EndurancePhysical Fitness
Stable URL
Full text
Article - document accessible for UNIGE members only Limited access to UNIGE
Other version:
PMID: 8941514

177 hits

1 download


Deposited on : 2010-08-06

Export document
Format :
Citation style :