en
Scientific article
Open access
English

Impact of cycling cells and cell cycle regulation on Hydra regeneration

Published inDevelopmental Biology, vol. 433, no. 2, p. 240-253
Publication date2018
Abstract

Hydra tissues are made from three distinct populations of stem cells that continuously cycle and pause in G2 instead of G1. To characterize the role of cell proliferation after mid-gastric bisection, we have (i) used flow cytometry and classical markers to monitor cell cycle modulations, (ii) quantified the transcriptomic regulations of 202 genes associated with cell proliferation during head and foot regeneration, and (iii) compared the impact of anti-proliferative treatments on regeneration efficiency. We confirm two previously reported events: an early mitotic wave in head-regenerating tips, when few cell cycle genes are up-regulated, and an early-late wave of proliferation on the second day, preceded by the up-regulation of 17 cell cycle genes. These regulations appear more intense after mid-gastric bisection than after decapitation, suggesting a position-dependent regulation of cell proliferation during head regeneration. Hydroxyurea, which blocks S-phase progression, delays head regeneration when applied before but not after bisection. This result is consistent with the fact that the Hydra central region is enriched in G2-paused adult stem cells, poised to divide upon injury, thus forming a necessary constitutive pro-blastema. However a prolonged exposure to hydroxyurea does not block regeneration as cells can differentiate apical structures without traversing S-phase, and also escape in few days the hydroxyureainduced S-phase blockade. Thus Hydra head regeneration, which is a fast event, is highly plastic, relying on large stocks of adult stem cells paused in G2 at amputation time, which immediately divide to proliferate and/or differentiate apical structures even when S-phase is blocked.

Keywords
  • Hydra regeneration
  • Cell cycling genes
  • S-phase arrest
  • Hydroxyurea
  • Nocodazole
  • RNA-seq transcriptomics
  • Flow cytometry
  • DNA profiling
  • Pro-blastema
Citation (ISO format)
BUZGARIU, Wanda Christa et al. Impact of cycling cells and cell cycle regulation on Hydra regeneration. In: Developmental Biology, 2018, vol. 433, n° 2, p. 240–253. doi: 10.1016/j.ydbio.2017.11.003
Main files (1)
Article (Published version)
Identifiers
ISSN of the journal0012-1606
508views
302downloads

Technical informations

Creation01/25/2018 5:52:00 AM
First validation01/25/2018 5:52:00 AM
Update time03/15/2023 7:47:42 AM
Status update03/15/2023 7:47:42 AM
Last indexation05/02/2024 7:55:52 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack