en
Scientific article
Open access
French

Groupes fondamentaux des variétés de dimension 3 et algèbres d'opérateurs

Published inAnnales de la Faculté des sciences de Toulouse, vol. 16, no. 3, p. 561-589
Publication date2007
Abstract

We provide a geometric characterization of manifolds of dimension 3 with fundamental groups of which all conjugacy classes except 1 are infinite, namely of which the von Neumann algebras are factors of type $II_1$: they are essentially the 3-manifolds with infinite fundamental groups on which there does not exist any Seifert fibration. Otherwise said and more precisely, let $M$ be a compact connected 3-manifold and let $Gamma$ be its fundamental group, supposed to be infinite and with at least one finite conjugacy class besides 1. If $M$ is orientable, then $Gamma$ is the fundamental group of a Seifert manifold; if $M$ is not orientable, then $Gamma$ is the fundamental group of a Seifert manifold modulo $Bbb P$ in the sense of Heil and Whitten cite{HeWh--94}. We make heavy use of results on 3-manifolds, as well classical results (as can be found in the books of Hempel, Jaco, and Shalen), as more recent ones (solution of the Seifert fibred space conjecture).

Classification
  • arxiv : math.GR
Citation (ISO format)
DE LA HARPE, Pierre, PRÉAUX, Jean-Philippe. Groupes fondamentaux des variétés de dimension 3 et algèbres d’opérateurs. In: Annales de la Faculté des sciences de Toulouse, 2007, vol. 16, n° 3, p. 561–589. doi: 10.5802/afst.1159
Updates (1)
Article
accessLevelPublic
Identifiers
ISSN of the journal0240-2963
519views
217downloads

Technical informations

Creation07/06/2010 1:26:00 PM
First validation07/06/2010 1:26:00 PM
Update time03/14/2023 3:55:50 PM
Status update03/14/2023 3:55:49 PM
Last indexation08/28/2023 7:02:33 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack