en
Scientific article
English

A survey of multimodal sentiment analysis

Published inImage and Vision Computing, vol. 65, p. 3-14
Publication date2017
Abstract

Sentiment analysis aims to automatically uncover the underlying attitude that we hold towards an entity. The aggregation of these sentiment over a population represents opinion polling and has numerous applications. Current text-based sentiment analysis rely on the construction of dictionaries and machine learning models that learn sentiment from large text corpora. Sentiment analysis from text is currently widely used for customer satisfaction assessment and brand perception analysis, among others. With the proliferation of social media, multimodal sentiment analysis is set to bring new opportunities with the arrival of complementary data streams for improving and going beyond text-based sentiment analysis. Since sentiment can be detected through affective traces it leaves, such as facial and vocal displays, multimodal sentiment analysis offers promising avenues for analyzing facial and vocal expressions in addition to the transcript or textual content. These approaches leverage emotion recognition and context inference to determine the underlying polarity and scope of an individual's sentiment. In this survey, we define sentiment and the problem of multimodal sentiment analysis and review recent developments in multimodal sentiment analysis in different domains, including spoken reviews, images, video blogs, human–machine and human–human interactions. Challenges and opportunities of this emerging field are also discussed leading to our thesis that multimodal sentiment analysis holds a significant untapped potential.

Keywords
  • Sentiment
  • Affect
  • Sentiment analysis
  • Human behavior analysis
  • Computer vision
  • Affective computing
Funding
  • Swiss National Science Foundation - Ambizione
Citation (ISO format)
SOLEYMANI, Mohammad et al. A survey of multimodal sentiment analysis. In: Image and Vision Computing, 2017, vol. 65, p. 3–14. doi: 10.1016/j.imavis.2017.08.003
Main files (1)
Article (Published version)
accessLevelRestricted
Identifiers
ISSN of the journal0262-8856
746views
1downloads

Technical informations

Creation09/18/2017 11:52:00 PM
First validation09/18/2017 11:52:00 PM
Update time03/15/2023 2:10:48 AM
Status update03/15/2023 2:10:48 AM
Last indexation08/30/2023 3:48:32 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack