UNIGE document Scientific Article
previous document  unige:97965  next document
add to browser collection

A survey of multimodal sentiment analysis

Garcia, David
Jou, Brendan
Chang, Shih-Fu
Pantic, Maja
Published in Image and Vision Computing. 2017, vol. 65, p. 3-14
Abstract Sentiment analysis aims to automatically uncover the underlying attitude that we hold towards an entity. The aggregation of these sentiment over a population represents opinion polling and has numerous applications. Current text-based sentiment analysis rely on the construction of dictionaries and machine learning models that learn sentiment from large text corpora. Sentiment analysis from text is currently widely used for customer satisfaction assessment and brand perception analysis, among others. With the proliferation of social media, multimodal sentiment analysis is set to bring new opportunities with the arrival of complementary data streams for improving and going beyond text-based sentiment analysis. Since sentiment can be detected through affective traces it leaves, such as facial and vocal displays, multimodal sentiment analysis offers promising avenues for analyzing facial and vocal expressions in addition to the transcript or textual content. These approaches leverage emotion recognition and context inference to determine the underlying polarity and scope of an individual's sentiment. In this survey, we define sentiment and the problem of multimodal sentiment analysis and review recent developments in multimodal sentiment analysis in different domains, including spoken reviews, images, video blogs, human–machine and human–human interactions. Challenges and opportunities of this emerging field are also discussed leading to our thesis that multimodal sentiment analysis holds a significant untapped potential.
Keywords SentimentAffectSentiment analysisHuman behavior analysisComputer visionAffective computing
Full text
Article (Published version) (939 Kb) - document accessible for UNIGE members only Limited access to UNIGE
Research groups Affective sciences
Computer Vision and Multimedia Laboratory
Multimodal Interaction Group
Swiss National Science Foundation: Ambizione
(ISO format)
SOLEYMANI, Mohammad et al. A survey of multimodal sentiment analysis. In: Image and Vision Computing, 2017, vol. 65, p. 3-14. doi: 10.1016/j.imavis.2017.08.003 https://archive-ouverte.unige.ch/unige:97965

688 hits

1 download


Deposited on : 2017-10-24

Export document
Format :
Citation style :