UNIGE document Scientific Article
previous document  unige:9303  next document
add to browser collection

An application of one-class support vector machine to nosocomial infection detection

Published in Studies in health technology and informatics. 2004, vol. 107, no. Pt 1, p. 716-720
Abstract Nosocomial infections (NIs)---those acquired in health care settings---are among the major causes of increased mortality among hospitalized patients. They are a significant burden for patients and health authorities alike; it is thus important to monitor and detect them through an effective surveillance system. This paper describes a retrospective analysis of a prevalence survey of NIs done in the Geneva University Hospital. Our goal is to identify patients with one or more NIs on the basis of clinical and other data collected during the survey. In this two-class classification task, the main difficulty lies in the significant imbalance between positive or infected (11%) and negative (89%) cases. To cope with class imbalance, we investigate one-class SVMs which can be trained to distinguish two classes on the basis of examples from a single class (in this case, only "normal" or non infected patients). The infected ones are then identified as "abnormal" cases or outliers that deviate significantly from the normal profile. Experimental results are encouraging: whereas standard 2-class SVMs scored a baseline sensitivity of 50.6% on this problem, the one-class approach increased sensitivity to as much as 92.6%. These results are comparable to those obtained by the authors in a previous study on asymmetrical soft margin SVMs; they suggest that one-class SVMs can provide an effective and efficient way of overcoming data imbalance in classification problems.
Keywords AlgorithmsArtificial IntelligenceCross Infection/ diagnosis/epidemiologyData CollectionHospitals, UniversityHumansInfection ControlPopulation SurveillancePrevalenceRetrospective StudiesSwitzerland/epidemiology
PMID: 15360906
Full text
Article (Published version) (886 Kb) - public document Free access
Research group Groupe Geissbuhler Antoine (informatique médicale) (222)
(ISO format)
COHEN, Gilles et al. An application of one-class support vector machine to nosocomial infection detection. In: Studies in health technology and informatics, 2004, vol. 107, n° Pt 1, p. 716-720. doi: 10.3233/978-1-60750-949-3-716 https://archive-ouverte.unige.ch/unige:9303

406 hits



Deposited on : 2010-07-12

Export document
Format :
Citation style :