Scientific article
OA Policy
English

A biocompatible macromolecular two-photon initiator based on hyaluronan

Published inPolymer chemistry, vol. 8, no. 2, p. 451-460
Publication date2017
Abstract

The possibility of the direct encapsulation of living cells via two-photon induced photopolymerization enables the microfabrication of hydrogel scaffolds with high initial cell loadings and intimate matrix-cell contact. While highly efficient water-soluble two-photon initiators based on benzylidene ketone dyes have been developed, they exhibit considerable cyto- and phototoxicity. To address the problem of photoinitiator migration from the extracellular matrix into the cytosol, a two-photon initiator bound to a polymeric hyaluronan backbone (HAPI) was synthesized in this work. HAPI exhibited a distinct improvement of cytocompatibility compared to a reference two-photon initiator. Basic photophysical investigations were performed to characterize the absorption and fluorescence behavior of HAPI. Laser scanning microscopy was used to visualize and confirm the hindered transmembrane migration behavior of HAPI. The performance of HAPI was tested in two-photon polymerization at exceedingly high printing speeds of 100 mm s-1 producing gelatin-based complex 3D hydrogel scaffolds with a water content of 85%. The photodamage of the structuring process was low and viable MC3T3 cells embedded in the gel were monitored for several days after structuring.

Research groups
Citation (ISO format)
TROMAYER, Maximilian et al. A biocompatible macromolecular two-photon initiator based on hyaluronan. In: Polymer chemistry, 2017, vol. 8, n° 2, p. 451–460. doi: 10.1039/C6PY01787H
Main files (1)
Article (Published version)
accessLevelPublic
Identifiers
Additional URL for this publicationhttp://xlink.rsc.org/?DOI=C6PY01787H
Journal ISSN1759-9954
718views
273downloads

Technical informations

Creation27/01/2017 10:43:00
First validation27/01/2017 10:43:00
Update time15/03/2023 01:19:43
Status update15/03/2023 01:19:42
Last indexation31/10/2024 06:00:49
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack