UNIGE document Scientific Article
previous document  unige:84635  next document
add to browser collection

Comparison between direct and reverse electroporation of cells in situ: a simulation study

Towhidi, Leila
Khodadadi, Delaram
Maimari, Nataly
Pedrigi, Ryan M
Ip, Henry
Kis, Zoltan
Petrova, Tatiana W
show hidden authors show all authors [1 - 10]
Published in Physiological reports. 2016, vol. 4, no. 6, p. 1-15
Abstract The discovery of the human genome has unveiled new fields of genomics, transcriptomics, and proteomics, which has produced paradigm shifts on how to study disease mechanisms, wherein a current central focus is the understanding of how gene signatures and gene networks interact within cells. These gene function studies require manipulating genes either through activation or inhibition, which can be achieved by temporarily permeabilizing the cell membrane through transfection to delivercDNAorRNAi. An efficient transfection technique is electroporation, which applies an optimized electric pulse to permeabilize the cells of interest. When the molecules are applied on top of seeded cells, it is called "direct" transfection and when the nucleic acids are printed on the substrate and the cells are seeded on top of them, it is termed "reverse" transfection. Direct transfection has been successfully applied in previous studies, whereas reverse transfection has recently gained more attention in the context of high-throughput experiments. Despite the emerging importance, studies comparing the efficiency of the two methods are lacking. In this study, a model for electroporation of cells in situ is developed to address this deficiency. The results indicate that reverse transfection is less efficient than direct transfection. However, the model also predicts that by increasing the concentration of deliverable molecules by a factor of 2 or increasing the applied voltage by 20%, reverse transfection can be approximately as efficient as direct transfection.
Keywords ElectroporationHigh-throughput techniquesTransfection efficiency
PMID: 27009275
Full text
Article (Published version) (1.2 MB) - document accessible for UNIGE members only Limited access to UNIGE
Research group L'athérosclérose (665)
(ISO format)
TOWHIDI, Leila et al. Comparison between direct and reverse electroporation of cells in situ: a simulation study. In: Physiological reports, 2016, vol. 4, n° 6, p. 1-15. doi: 10.14814/phy2.12673 https://archive-ouverte.unige.ch/unige:84635

460 hits

0 download


Deposited on : 2016-06-20

Export document
Format :
Citation style :