

![]() |
Extractable Work from Correlations |
|
Authors | ||
Published in | Physical review. X. 2015, vol. 5, no. 041011 | |
Abstract | Work and quantum correlations are two fundamental resources in thermodynamics and quantum information theory. In this work we study how to use correlations among quantum systems to optimally store work. We analyse this question for isolated quantum ensembles, where the work can be naturally divided into two contributions: a local contribution from each system, and a global contribution originating from correlations among systems. We focus on the latter and consider quantum systems which are locally thermal, thus from which any extractable work can only come from correlations. We compute the maximum extractable work for general entangled states, separable states, and states with fixed entropy. Our results show that while entanglement gives an advantage for small quantum ensembles, this gain vanishes for a large number of systems. | |
Identifiers | arXiv: 1407.7765 | |
Note | 5+6 pages; 1 figure. Some minor changes, close to published version | |
Full text | ||
Structures | ||
Citation (ISO format) | PERARNAU-LLOBET, Martí et al. Extractable Work from Correlations. In: Physical review. X, 2015, vol. 5, n° 041011. doi: 10.1103/PhysRevX.5.041011 https://archive-ouverte.unige.ch/unige:84460 |