UNIGE document Scientific Article
previous document  unige:84276  next document
add to browser collection

Linear optics schemes for entanglement distribution with realistic single-photon sources

Lasota, Mikołaj
Radzewicz, Czesław
Banaszek, Konrad
Published in Physical Review. A. 2014, vol. 90, p. 033836
Abstract We study the operation of linear optics schemes for entanglement distribution based on nonlocal photon subtraction when input states, produced by imperfect single-photon sources, exhibit both vacuum and multiphoton contributions. Two models for realistic photon statistics with radically different properties of the multiphoton “tail” are considered. The first model assumes occasional emission of double photons and linear attenuation, while the second one is motivated by heralded sources utilizing spontaneous parametric down-conversion. We find conditions for the photon statistics that guarantee generation of entanglement in the relevant qubit subspaces and compare it with classicality criteria. We also quantify the amount of entanglement that can be produced with imperfect single-photon sources, optimized over setup parameters, using as a measure entanglement of formation. Finally, we discuss verification of the generated entanglement by testing Bell's inequalities. The analysis is carried out for two schemes. The first one is the well-established one-photon scheme, which produces a photon in a delocalized superposition state between two nodes, each of them fed with one single photon at the input. As the second scheme, we introduce and analyze a linear optics analog of the robust scheme based on interfering two Stokes photons emitted by atomic ensembles, which does not require phase stability between the nodes.
Full text
(ISO format)
LASOTA, Mikołaj et al. Linear optics schemes for entanglement distribution with realistic single-photon sources. In: Physical Review. A, 2014, vol. 90, p. 033836. https://archive-ouverte.unige.ch/unige:84276

100 hits



Deposited on : 2016-06-07

Export document
Format :
Citation style :