UNIGE document Scientific Article
previous document  unige:80715  next document
add to browser collection

Enolate Stabilization by Anion-π Interactions: Deuterium Exchange in Malonate Dilactones on π-Acidic Surfaces

Authors show hidden authors show all authors [1 - 9]
Published in Chemistry. 2016, vol. 22, no. 8, p. 2648-2657
Abstract Of central importance in chemistry and biology, enolate chemistry is an attractive topic to elaborate on possible contributions of anion–π interactions to catalysis. To demonstrate the existence of such contributions, experimental evidence for the stabilization of not only anions but also anionic intermediates and transition states on π-acidic aromatic surfaces is decisive. To tackle this challenge for enolate chemistry with maximal precision and minimal uncertainty, malonate dilactones are covalently positioned on the π-acidic surface of naphthalenediimides (NDIs). Their presence is directly visible in the upfield shifts of the α-protons in the 1H NMR spectra. The reactivity of these protons on π-acidic surfaces is measured by hydrogen–deuterium (H–D) exchange for 11 different examples, excluding controls. The velocity of H–D exchange increases with π acidity (NDI core substituents: SO2R>SOR>H>OR>OR/NR2>SR>NR2). The H–D exchange kinetics vary with the structure of the enolate (malonates>methylmalonates, dilactones>dithiolactones). Moreover, they depend on the distance to the π surface (bridge length: 11–13 atoms). Most importantly, H–D exchange depends strongly on the chirality of the π surface (chiral sulfoxides as core substituents; the crystal structure of the enantiopure (R,R,P)-macrocycle is reported). For maximal π acidity, transition-state stabilizations up to −18.8 kJ mol−1 are obtained for H–D exchange. The Brønsted acidity of the enols increases strongly with π acidity of the aromatic surface, the lowest measured pKa=10.9 calculates to a ΔpKa=−5.5. Corresponding to the deprotonation of arginine residues in neutral water, considered as “impossible” in biology, the found enolate–π interactions are very important. The strong dependence of enolate stabilization on the unprecedented seven-component π-acidity gradient over almost 1 eV demonstrates quantitatively that such important anion–π activities can be expected only from strong enough π acids.
Keywords AcidityAnion–π interactionsDeuterium exchangeEnolatesMacrocyclesStereoselectivity
Full text
Article (Published version) (3.4 MB) - document accessible for UNIGE members only Limited access to UNIGE
Article (Accepted version) (7.2 MB) - public document Free access
Research group Groupe Matile
(ISO format)
MIROS, François et al. Enolate Stabilization by Anion-π Interactions: Deuterium Exchange in Malonate Dilactones on π-Acidic Surfaces. In: Chemistry, 2016, vol. 22, n° 8, p. 2648-2657. doi: 10.1002/chem.201504008 https://archive-ouverte.unige.ch/unige:80715

511 hits



Deposited on : 2016-02-17

Export document
Format :
Citation style :