UNIGE document Scientific Article
previous document  unige:79895  next document
add to browser collection

A mixture model for multivariate extremes

Davison, Anthony
Published in Journal of the Royal Statistical Society. Series B, Statistical methodology. 2007, vol. 69, no. 2, p. 217-229
Abstract The spectral density function plays a key role in fitting the tail of multivariate extre-mal data and so in estimating probabilities of rare events. This function satisfies moment con-straints but unlike the univariate extreme value distributions has no simple parametric form. Parameterized subfamilies of spectral densities have been suggested for use in applications, and non-parametric estimation procedures have been proposed, but semiparametric models for multivariate extremes have hitherto received little attention. We show that mixtures of Dirichlet distributions satisfying the moment constraints are weakly dense in the class of all non-parametric spectral densities, and discuss frequentist and Bayesian inference in this class based on the EM algorithm and reversible jump Markov chain Monte Carlo simulation. We illustrate the ideas using simulated and real data.
Keywords AdequacyAir pollution dataDirichlet distributionEM algorithmMultivariate extreme valuesOceanographic dataReversible jump Markov chain Monte Carlo simulationSpectral distribution
Full text
Article (Accepted version) (574 Kb) - private document Private access
(ISO format)
BOLDI, Marc-Olivier, DAVISON, Anthony. A mixture model for multivariate extremes. In: Journal of the Royal Statistical Society. Series B, Statistical methodology, 2007, vol. 69, n° 2, p. 217-229. https://archive-ouverte.unige.ch/unige:79895

407 hits

0 download


Deposited on : 2016-01-22

Export document
Format :
Citation style :