UNIGE document Scientific Article
previous document  unige:79888  next document
add to browser collection

Robust subsampling

Camponovo, Lorenzo
Published in Journal of econometrics. 2012, vol. 167, no. 1, p. 197-210
Abstract We characterize the robustness of subsampling procedures by deriving a formula for the breakdown point of subsampling quantiles. This breakdown point can be very low for moderate subsampling block sizes, which implies the fragility of subsampling procedures, even when they are applied to robust statistics. This instability arises also for data driven block size selection procedures minimizing the minimum confidence interval volatility index, but can be mitigated if a more robust calibration method can be applied instead. To overcome these robustness problems, we introduce a consistent robust subsampling procedure for M-estimators and derive explicit subsampling quantile breakdown point characterizations for MM-estimators in the linear regression model. Monte Carlo simulations in two settings where the bootstrap fails show the accuracy and robustness of the robust subsampling relative to the subsampling.
Keywords SubsamplingBootstrapBreakdown pointRobustness
Full text
Research group Geneva Finance Research Institute (GFRI)
(ISO format)
CAMPONOVO, Lorenzo, SCAILLET, Olivier, TROJANI, Fabio. Robust subsampling. In: Journal of econometrics, 2012, vol. 167, n° 1, p. 197-210. doi: 10.1016/j.jeconom.2011.11.005 https://archive-ouverte.unige.ch/unige:79888

376 hits



Deposited on : 2016-01-22

Export document
Format :
Citation style :