Scientific article
Open access

Centrosome age regulates kinetochore-microtubule stability and biases chromosome mis-segregation

Published ineLife, vol. 4, no. e07909
Publication date2015

The poles of the mitotic spindle contain one old and one young centrosome. In asymmetric stem cell divisions, the age of centrosomes affects their behaviour and their probability to remain in the stem cell. In contrast, in symmetric divisions, old and young centrosomes are thought to behave equally. This hypothesis is, however, untested. In this study, we show in symmetrically dividing human cells that kinetochore-microtubules associated to old centrosomes are more stable than those associated to young centrosomes, and that this difference favours the accumulation of premature end-on attachments that delay the alignment of polar chromosomes at old centrosomes. This differential microtubule stability depends on cenexin, a protein enriched on old centrosomes. It persists throughout mitosis, biasing chromosome segregation in anaphase by causing daughter cells with old centrosomes to retain non-disjoint chromosomes 85% of the time. We conclude that centrosome age imposes via cenexin a functional asymmetry on all mitotic spindles.

Citation (ISO format)
GASIC, Ivana, NERURKAR, Purnima, MERALDI, Patrick. Centrosome age regulates kinetochore-microtubule stability and biases chromosome mis-segregation. In: eLife, 2015, vol. 4, n° e07909. doi: 10.7554/eLife.07909
Main files (1)
Article (Published version)
ISSN of the journal2050-084X

Technical informations

Creation10/08/2015 2:37:00 PM
First validation10/08/2015 2:37:00 PM
Update time03/14/2023 11:53:39 PM
Status update03/14/2023 11:53:39 PM
Last indexation05/02/2024 5:07:38 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack