UNIGE document Scientific Article
previous document  unige:76398  next document
add to browser collection

Molecular and functional evidence of HCN4 and caveolin-3 interaction during cardiomyocyte differentiation from human embryonic stem cells

Sartiani, Laura
Spinelli, Valentina
Del Lungo, Martina
Stillitano, Francesca
Nosi, Daniele
Mugelli, Alessandro
Cerbai, Elisabetta
show hidden authors show all authors [1 - 9]
Published in Stem cells and development. 2013, vol. 22, no. 11, p. 1717-1727
Abstract Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CM) is accompanied by changes in ion channel expression, with relevant electrophysiological consequences. In rodent CM, the properties of hyperpolarization-activated cyclic nucleotide-gated channel (HCN)4, a major f-channel isoform, depends on the association with caveolin-3 (Cav3). To date, no information exists on changes in Cav3 expression and its associative relationship with HCN4 upon hESC-CM maturation. We hypothesize that Cav3 expression and its compartmentalization with HCN4 channels during hESC-CM maturation accounts for the progression of f-current properties toward adult phenotypes. To address this, hESC were differentiated into spontaneously beating CM and examined at ∼30, ∼60, and ∼110 days of differentiation. Human adult and fetal CM served as references. HCN4 and Cav3 expression and localization were analyzed by real time PCR and immunocyto/histochemistry. F-current was measured in patch-clamped single cells. HCN4 and Cav3 colocalize in adult human atrial and ventricular CM, but not in fetal CM. Proteins and mRNA for Cav3 were not detected in undifferentiated hESC, but expression increased during hESC-CM maturation. At 110 days, HCN4 appeared to be colocalized with Cav3. Voltage-dependent activation of the f-current was significantly more positive in fetal CM and 60-day hESC-CM (midpoint activation, V1/2, ∼ -82 mV) than in 110-day hESC-CM or adult CM (V1/2∼-100 mV). In the latter cells, caveolae disruption reversed voltage dependence toward a more positive or an immature phenotype, with V1/2 at -75 mV, while in fetal CM voltage dependence was not affected. Our data show, for the first time, a developmental change in HCN4-Cav3 association in hESC-CM. Cav3 expression and its association with ionic channels likely represent a crucial step of cardiac maturation.
Keywords Caveolae/metabolismCaveolin 3/metabolismCell DifferentiationCells, CulturedCyclic Nucleotide-Gated Cation Channels/metabolismElectrophysiological PhenomenaEmbryonic Stem Cells/physiologyHumansHyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolismMuscle Proteins/metabolismMyocytes, Cardiac/cytology/metabolismPatch-Clamp TechniquesPotassium Channels/metabolismSarcolemma
PMID: 23311301
Full text
Article (Published version) (1.4 MB) - document accessible for UNIGE members only Limited access to UNIGE
Research group Mécanismes de différentiation cellulaire des cellules cardiaques (536)
(ISO format)
BOSMAN, Alexis et al. Molecular and functional evidence of HCN4 and caveolin-3 interaction during cardiomyocyte differentiation from human embryonic stem cells. In: Stem cells and development, 2013, vol. 22, n° 11, p. 1717-1727. doi: 10.1089/scd.2012.0247 https://archive-ouverte.unige.ch/unige:76398

351 hits

0 download


Deposited on : 2015-10-23

Export document
Format :
Citation style :