UNIGE document Book Chapter
previous document  unige:76237  next document
add to browser collection
Title

Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modelling

Authors
Pokrovski, G. S.
Akinfiev, N. N.
Borisova, A. Y.
Zotov, A. V.
Published in Geological Society - Special Publications. 2014, p. 9-70
Abstract This contribution provides an overview of available experimental, thermodynamic, and molecular data on Au aqueous speciation, solubility, and partitioning in major types of geological fluids in the Earth's crust, from low-temperature aqueous solution to supercritical hydrothermal-magmatic fluids, vapours, and silicate melts. Critical revisions of these data allow generation of a set of thermodynamic properties of the AuOH, AuCl−2, AuHS, and Au(HS)−2 complexes dominant in aqueous hydrothermal solutions; however, other complexes involving different sulphur forms, chloride, and alkali metals may operate in high-temperature sulphur-rich fluids, vapours, and melts. The large affinity of Au for reduced sulphur is responsible for Au enrichment in S-rich vapours and sulphide melts, which are important gold sources for hydrothermal deposits. Thermodynamic, speciation, and partitioning data, and their comparison with Au and S contents in natural fluid inclusions from magmatic-hydrothermal gold deposits, provide new constraints on the major physical-chemical parameters (temperature, pressure, salinity, acidity, redox) and ubiquitous fluid components (sulphur, carbon dioxide, arsenic) affecting Au concentration, transport, precipitation, and fractionation from other metals in the crust. The availability and speciation of sulphur and their changes with the fluid and melt evolution are the key factors controlling gold behaviour in most geological situations.
Identifiers
Full text
Structures
Research group Mineral Resources and Geofluids
Citation
(ISO format)
POKROVSKI, G. S. et al. Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modelling. In: Geological Society - Special Publications, vol. 402. [s.l.] : [s.n.], 2014. p. 9-70. https://archive-ouverte.unige.ch/unige:76237

170 hits

1 download

Update

Deposited on : 2015-10-19

Export document
Format :
Citation style :