en
Scientific article
Review
English

Disorders of the aldosterone synthase and steroid 11beta-hydroxylase deficiencies

Published inHormone research, vol. 51, no. 5, p. 211-222
Publication date1999
Abstract

The most potent corticosteroids are 11beta-hydroxylated compounds. In humans, two cytochrome P450 isoenzymes with 11beta-hydroxylase activity, catalysing the biosynthesis of cortisol and aldosterone, are present in the adrenal cortex. CYP11B1, the gene encoding 11beta-hydroxylase (P450c11), is expressed on high levels in the zona fasciculata and is regulated by ACTH. CYP11B2, the gene encoding aldosterone synthase (P450c11Aldo), is expressed in the zona glomerulosa under primary control of the renin-angiotensin system. Aldosterone synthase has 11beta-hydroxylase activity as well as 18-hydroxylase activity and 18-oxidase activity. The substrate for CYP11B2 is 11-deoxycorticosterone, that of CYP11B1 is 11-deoxycortisol. Mutations in CYP11B1 cause congenital adrenal hyperplasia (CAH) due to 11beta-hydroxylase deficiency. This disorder is characterized by androgen excess and hypertension. Mutations in CYP11B2 cause congenital hypoaldosteronism (aldosterone synthase deficiency) which is characterized by life-threatening salt loss, failure to thrive, hyponatraemia and hyperkalaemia in early infancy. Both disorders have an autosomal recessive inheritance. Classical and nonclassical forms of 11beta-hydroxylase deficiency can be distinguished. Studies in heterozygotes for classical 11beta-hydroxylase deficiency show inconsistent results with no or only mild hormonal abnormalities (elevated plasma levels of 11-deoxycortisol after ACTH stimulation). In infants with congenital hypoaldosteronism, a comparable frequency of 18-hydroxylase deficiency (aldosterone synthase deficiency type I) and of 18-oxidase deficiency (aldosterone synthase deficiency type II) can be found. Molecular genetic studies of the CYP11B1 and CYP11B2 genes in 11beta-hydroxylase deficiency or aldosterone synthase deficiency have led to the identification of several mutations. Transfection experiments showed loss of enzyme activity in vitro. In some of the patients with 18-oxidase deficiency (aldosterone synthase deficiency type II) no mutations in the CYP11B2 gene were identified. Refined methods for steroid determination are the basis for the diagnosis of inborn errors of steroidogenesis. Molecular genetic studies are complementary; on the one hand, they have practical importance for the prenatal diagnosis of virilizing CAH forms and on the other hand, they are of theoretical importance in terms of our understanding of the functioning of cytochrome P450 enzymes. Copyrightz1999S.KargerAG, Basel

Keywords
  • Adrenal Hyperplasia, Congenital
  • Aldosterone/biosynthesis
  • Cytochrome P-450 CYP11B2/deficiency/genetics
  • Humans
  • Hydrocortisone/biosynthesis
  • Mutation
  • Steroid 11-beta-Hydroxylase/genetics
Citation (ISO format)
PETER, M, DUBUIS, Jean-Michel Marie Maurice, SIPPELL, WG. Disorders of the aldosterone synthase and steroid 11beta-hydroxylase deficiencies. In: Hormone research, 1999, vol. 51, n° 5, p. 211–222. doi: 10.1159/000023374
Main files (1)
Article (Published version)
accessLevelRestricted
Identifiers
ISSN of the journal0301-0163
366views
0downloads

Technical informations

Creation06/26/2015 12:01:00 PM
First validation06/26/2015 12:01:00 PM
Update time03/14/2023 11:30:06 PM
Status update03/14/2023 11:30:05 PM
Last indexation01/16/2024 6:37:49 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack