Proceedings chapter
OA Policy
English

Information Geometric Density Estimation

Presented atClos Lucé, Amboise, France, 21–26 September 2014
Collection
  • AIP Conference Proceedings; 1641
Publication date2014
Abstract

We investigate kernel density estimation where the kernel function varies from point to point. Density estimation in the input space means to find a set of coordinates on a statistical manifold. This novel perspective helps to combine efforts from information geometry and machine learning to spawn a family of density estimators. We present example models with simulations. We discuss the principle and theory of such density estimation.

Keywords
  • Information geometry
  • Density estimation
Citation (ISO format)
SUN, Ke, MARCHAND-MAILLET, Stéphane. Information Geometric Density Estimation. In: Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Clos Lucé, Amboise, France. [s.l.] : [s.n.], 2014. p. 222–229. (AIP Conference Proceedings) doi: 10.1063/1.4905982
Main files (1)
Proceedings chapter (Published version)
accessLevelPublic
Identifiers
644views
547downloads

Technical informations

Creation11/06/2015 14:31:00
First validation11/06/2015 14:31:00
Update time13/10/2025 21:25:13
Status update14/03/2023 23:22:35
Last indexation03/12/2025 07:39:31
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack