UNIGE document Preprint
previous document  unige:6585  next document
add to browser collection

On the conjecture of Kevin Walker

Farber, Michael
Schuetz, Dirk
Year 2007
Abstract In 1985 Kevin Walker in his study of topology of polygon spaces raised an interesting conjecture in the spirit of the well-known question "Can you hear the shape of a drum?" of Marc Kac. Roughly, Walker's conjecture asks if one can recover relative lengths of the bars of a linkage from intrinsic algebraic properties of the cohomology algebra of its configuration space. In this paper we prove that the conjecture is true for polygon spaces in R^3. We also prove that for planar polygon spaces the conjecture holds is several modified forms: (a) if one takes into account the action of a natural involution on cohomology, (b) if the cohomology algebra of the involution's orbit space is known, or (c) if the length vector is normal. Some of our results allow the length vector to be non-generic, the corresponding polygon spaces have singularities. Our main tool is the study of the natural involution and its action on cohomology. A crucial role in our proof plays the solution of the isomorphism problem for monoidal rings due to J. Gubeladze.
arXiv: 0708.2995
Full text
Article (Preprint) (292 Kb) - public document Free access
(ISO format)
FARBER, Michael, HAUSMANN, Jean-Claude, SCHUETZ, Dirk. On the conjecture of Kevin Walker. 2007. https://archive-ouverte.unige.ch/unige:6585

337 hits



Deposited on : 2010-05-17

Export document
Format :
Citation style :