Use of support vector machines for disease risk prediction in genome-wide association studies: concerns and opportunities
ContributorsMittag, Florian; Büchel, Finja; Saad, Mohamad; Jahn, Andreas; Schulte, Claudia; Bochdanovits, Zoltan; Simón-Sánchez, Javier; Nalls, Mike A; Keller, Margaux; Hernandez, Dena G; Gibbs, J Raphael; Lesage, Suzanne; Brice, Alexis; Heutink, Peter; Martinez, Maria; Wood, Nicholas W; Hardy, John; Singleton, Andrew B; Zell, Andreas; Gasser, Thomas; Sharma, Manu; International Parkinson's Disease Genomics Consortium (IPDGC); The Wellcome Trust Case Control Consortium 2 (WTCCC2)
CollaboratorsPollak, Pierre
Published inHuman mutation, vol. 33, no. 12, p. 1708-1718
Publication date2012
Abstract
Keywords
- Area Under Curve
- Bipolar Disorder/diagnosis/genetics
- Case-Control Studies
- Computer Simulation
- Diabetes Mellitus, Type 1/diagnosis/genetics
- Diabetes Mellitus, Type 2/diagnosis/genetics
- Genetic Predisposition to Disease
- Genome-Wide Association Study/methods
- Humans
- Models, Genetic
- Parkinson Disease/diagnosis/genetics
- Polymorphism, Single Nucleotide
- ROC Curve
- Risk
- Software
- Support Vector Machines
Affiliation entities
Research groups
Citation (ISO format)
MITTAG, Florian et al. Use of support vector machines for disease risk prediction in genome-wide association studies: concerns and opportunities. In: Human mutation, 2012, vol. 33, n° 12, p. 1708–1718. doi: 10.1002/humu.22161
Main files (1)
Article (Published version)
Identifiers
- PID : unige:45200
- DOI : 10.1002/humu.22161
- PMID : 22777693
Journal ISSN1059-7794