Scientific article
Open access

Biocompatibility of Poly(ester amide) (PEA) Microfibrils in Ocular Tissues

Published inPolymers, vol. 6, no. 1, p. 243-260
Publication date2014

Drug delivery systems (DDS) are able to deliver, over long periods of time, therapeutic concentrations of drugs requiring frequent administration. Two classes of DDS are available, biodegradable and non-biodegradable. The larger non-biodegradable implants ensure long-term delivery, but require surgical interventions. Biodegradable biomaterials are smaller, injectable implants, but degrade hydrolytically and release drugs in non-zero order kinetics, which is inefficient for long-term sustained drug release. Biodegradable poly(ester amides) (PEAs) may overcome these difficulties. To assess their ocular biocompatibility and long-term behavior, PEA fibrils were analyzed in vitro and in vivo. In vitro, incubation in vitreous humor changes to PEA structure, suggests degradation by surface erosion, enabling drug release with zero order kinetics. Clinical and histological analysis of PEA fibrils implanted subconjunctivally and intravitreally showed the absence of an inflammatory response or other pathological tissue alteration. This study shows that PEA fibrils are biocompatible with ocular environment and degrade by surface erosion.

  • Biomaterials
  • Biodegradation
  • Drug delivery
  • Controlled drug release
  • Amino acid
  • Autre - DSM
Citation (ISO format)
KROPP, Martina et al. Biocompatibility of Poly(ester amide) (PEA) Microfibrils in Ocular Tissues. In: Polymers, 2014, vol. 6, n° 1, p. 243–260. doi: 10.3390/polym6010243
Main files (1)
Article (Published version)
ISSN of the journal2073-4360

Technical informations

Creation11/24/2014 6:13:00 PM
First validation11/24/2014 6:13:00 PM
Update time03/14/2023 10:31:55 PM
Status update03/14/2023 10:31:55 PM
Last indexation08/29/2023 1:50:52 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack