UNIGE document Scientific Article
previous document  unige:40527  next document
add to browser collection

The halo mass function from excursion set theory with a non-Gaussian trispectrum

Published in Monthly notices of the Royal Astronomical Society. 2010, vol. 405, no. 2, p. 1244-1252
Abstract A sizeable level of non-Gaussianity in the primordial cosmological perturbations may be induced by a large trispectrum, i.e. by a large connected four-point correlation function. We compute the effect of a primordial non-Gaussian trispectrum on the halo mass function, within excursion set theory. We use the formalism that we have developed in a previous series of papers and which allows us to take into account the fact that, in the presence of non-Gaussianity, the stochastic evolution of the smoothed density field, as a function of the smoothing scale, is non-Markovian. In the large mass limit, the leading-order term that we find agrees with the leading-order term of the results found in the literature using a more heuristic Press–Schechter (PS)-type approach. Our approach however also allows us to evaluate consistently the subleading terms, which depend not only on the four-point cumulant but also on derivatives of the four-point correlator, and which cannot be obtained within non-Gaussian extensions of PS theory. We perform explicitly the computation up to next-to-leading order.
Keywords Dark matterLarge-scale structure of Universe
Full text
Article (Published version) (559 Kb) - public document Free access
(ISO format)
MAGGIORE, Michele, RIOTTO, Antonio Walter. The halo mass function from excursion set theory with a non-Gaussian trispectrum. In: Monthly notices of the Royal Astronomical Society, 2010, vol. 405, n° 2, p. 1244-1252. doi: 10.1111/j.1365-2966.2010.16543.x https://archive-ouverte.unige.ch/unige:40527

451 hits



Deposited on : 2014-09-26

Export document
Format :
Citation style :