UNIGE document Doctoral Thesis
previous document  unige:35402  next document
add to browser collection
Title

Equivariant Jeffrey-Kirwan theorem in non-compact settings

Author
Director
Defense Thèse de doctorat : Univ. Genève, 2013 - Sc. 4636 - 2013/11/08
Abstract In this thesis we prove an equivariant version of the Jeffrey-Kirwan localization theorem for non-compact symplectic and hyper-Kähler quotients. In the non-compact setting the integrals are defined by the Atiyah-Bott-Berline-Vergne formula. We introduce an equivariant version of the Jeffrey-Kirwan residue. As applications, we compute the cohomology ring of the Hilbert scheme of points on the plane in a new way, moreover we also compute Nekrasov’s partition function on the framed moduli space of torsion free sheaves on the complex projective plane.
Keywords Symplectic quotientHyperKahler quotientJeffrey-Kirwan residueEquivariant cohomology
Identifiers
URN: urn:nbn:ch:unige-354023
Full text
Thesis (928 Kb) - public document Free access
Structures
Citation
(ISO format)
SZILAGYI, Gesa Zsolt. Equivariant Jeffrey-Kirwan theorem in non-compact settings. Université de Genève. Thèse, 2013. https://archive-ouverte.unige.ch/unige:35402

323 hits

151 downloads

Update

Deposited on : 2014-04-07

Export document
Format :
Citation style :