Scientific article
Open access

Alteration of brain glycogen turnover in the conscious rat after 5h of prolonged wakefulness

Published inNeurochemistry international, vol. 55, no. 1-3, p. 45-51
Publication date2009

Although glycogen (Glyc) is the main carbohydrate storage component, the role of Glyc in the brain during prolonged wakefulness is not clear. The aim of this study was to determine brain Glyc concentration ([]) and turnover time (tau) in euglycemic conscious and undisturbed rats, compared to rats maintained awake for 5h. To measure the metabolism of [1-(13)C]-labeled Glc into Glyc, 23 rats received a [1-(13)C]-labeled Glc solution as drink (10% weight per volume in tap water) ad libitum as their sole source of exogenous carbon for a "labeling period" of either 5h (n=13), 24h (n=5) or 48 h (n=5). Six of the rats labeled for 5h were continuously maintained awake by acoustic, tactile and olfactory stimuli during the labeling period, which resulted in slightly elevated corticosterone levels. Brain [Glyc] measured biochemically after focused microwave fixation in the rats maintained awake (3.9+/-0.2 micromol/g, n=6) was not significantly different from that of the control group (4.0+/-0.1 micromol/g, n=7; t-test, P>0.5). To account for potential variations in plasma Glc isotopic enrichment (IE), Glyc IE was normalized by N-acetyl-aspartate (NAA) IE. A simple mathematical model was developed to derive brain Glyc turnover time as 5.3h with a fit error of 3.2h and NAA turnover time as 15.6h with a fit error of 6.5h, in the control rats. A faster tau(Glyc) (2.9h with a fit error of 1.2h) was estimated in the rats maintained awake for 5h. In conclusion, 5h of prolonged wakefulness mainly activates glycogen metabolism, but has minimal effect on brain [Glyc].

  • Algorithms
  • Animals
  • Aspartic Acid/analogs & derivatives/metabolism
  • Blood Glucose/metabolism
  • Brain Chemistry/physiology
  • Consciousness/physiology
  • Corticosterone/blood/metabolism
  • Glucose/metabolism
  • Glycogen/metabolism
  • Magnetic Resonance Spectroscopy
  • Rats
  • Rats, Sprague-Dawley
  • Wakefulness/physiology
Research group
Citation (ISO format)
MORGENTHALER, Florence D et al. Alteration of brain glycogen turnover in the conscious rat after 5h of prolonged wakefulness. In: Neurochemistry international, 2009, vol. 55, n° 1-3, p. 45–51. doi: 10.1016/j.neuint.2009.02.023
Main files (1)
Article (Published version)
ISSN of the journal0197-0186

Technical informations

Creation12/13/2013 8:22:00 AM
First validation12/13/2013 8:22:00 AM
Update time03/14/2023 8:49:06 PM
Status update03/14/2023 8:49:06 PM
Last indexation01/16/2024 1:51:44 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack