Scientific article
Open access

Temperature Alters Host Genotype-Specific Susceptibility to Chytrid Infection

Published inPloS one, vol. 8, e71737
Publication date2013

The cost of parasitism often depends on environmental conditions and host identity. Therefore, variation in the biotic and abiotic environment can have repercussions on both, species-level host-parasite interaction patterns but also on host genotype-specific susceptibility to disease. We exposed seven genetically different but concurrent strains of the diatom Asterionella formosa to one genotype of its naturally co-occurring chytrid parasite Zygorhizidium planktonicum across five environmentally relevant temperatures. We found that the thermal tolerance range of the tested parasite genotype was narrower than that of its host, providing the host with a "cold" and "hot" thermal refuge of very low or no infection. Susceptibility to disease was host genotype-specific and varied with temperature level so that no genotype was most or least resistant across all temperatures. This suggests a role of thermal variation in the maintenance of diversity in disease related traits in this phytoplankton host. The duration and intensity of chytrid parasite pressure on host populations is likely to be affected by the projected changes in temperature patterns due to climate warming both through altering temperature dependent disease susceptibility of the host and, potentially, through en-or disabling thermal host refugia. This, in turn may affect the selective strength of the parasite on the genetic architecture of the host population.

Citation (ISO format)
GSELL, Alena S et al. Temperature Alters Host Genotype-Specific Susceptibility to Chytrid Infection. In: PloS one, 2013, vol. 8, p. e71737. doi: 10.1371/journal.pone.0071737
Main files (1)
Article (Published version)
ISSN of the journal1932-6203

Technical informations

Creation12/30/2013 9:21:00 PM
First validation12/30/2013 9:21:00 PM
Update time03/14/2023 8:47:55 PM
Status update03/14/2023 8:47:55 PM
Last indexation02/12/2024 11:18:20 AM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack