UNIGE document Scientific Article
previous document  unige:3226  next document
add to browser collection
Title

Development of Novel Computational Strategies to Match the Challenges of Supramolecular Chemistry, Biochemistry, and Materials Science

Author
Published in Chimia. 2002, vol. 56, no. 12, p. 707-711
Abstract Recent formal developments and applications of the 'freeze-and-conquer' strategy proposed by Wesolowski and Warshel in 1993 to study large systems at quantum mechanical level are reviewed. This universal approach based on density functional theory allows one to link, via the orbital-free embedding potential, two parts of a larger system described at different levels of accuracy leading thus to significant savings in computational costs. As a result, applicability of conventional methods of quantum chemistry can be extended to even larger systems. It is shown that the 'freeze-and-thaw' approach applying the first-principles based approximation to the orbital-free embedding potential recently developed in our group provides a powerful and universal technique to study such embedded molecules (or molecular complexes), which are not linked with their microscopic environment by covalent bonds.
Keywords Density functional theoryEmbeddingNon-covalent interactionsPhysisorptionSolvation
Identifiers
Full text
This document has no fulltext available yet, but you can contact its author by using the form below.
Structures
Research group Groupe Wesolowski
Citation
(ISO format)
WESOLOWSKI, Tomasz Adam. Development of Novel Computational Strategies to Match the Challenges of Supramolecular Chemistry, Biochemistry, and Materials Science. In: Chimia, 2002, vol. 56, n° 12, p. 707-711. https://archive-ouverte.unige.ch/unige:3226

185 hits

0 download

Update

Deposited on : 2009-09-21

Export document
Format :
Citation style :