UNIGE document Scientific Article
previous document  unige:25235  next document
add to browser collection

High temperature does not alter fatigability in intact mouse skeletal muscle fibres

Yamada, Takashi
Zhang, Shi-Jin
Westerblad, Håkan
Bruton, Joseph D
Published in The Journal of Physiology. 2009, vol. 587, no. 19, p. 4717-24
Abstract Intense activation of skeletal muscle results in fatigue development, which involves impaired function of the muscle cells resulting in weaker and slower contractions. Intense muscle activity also results in increased heat production and muscle temperature may rise by up to 6 degrees C. Hyperthermia is associated with impaired exercise performance in vivo and recent studies have shown contractile dysfunction and premature fatigue development in easily fatigued muscle fibres stimulated at high temperatures and these defects were attributed to oxidative stress. Here we studied whether fatigue-resistant soleus fibres stimulated at increased temperature show premature fatigue development and whether increasing the level of oxidative stress accelerates fatigue development. Intact single fibres or small bundles of soleus fibres were fatigued by 600 ms tetani given at 2 s intervals at 37 degrees C and 43 degrees C, which is the highest temperature the muscle would experience in vivo. Tetanic force in the unfatigued state was not significantly different at the two temperatures. With 100 fatiguing tetani, force decreased by approximately 15% at both temperatures; the free cytosolic [Ca(2+)] (assessed with indo-1) showed a similar approximately 10% decrease at both temperatures. The oxidative stress during fatigue at 43 degrees C was increased by application of 10 microM hydrogen peroxide or tert-butyl hydroperoxide and this did not cause premature fatigue development. In summary, fatigue-resistant muscle fibres do not display impaired contractility and fatigue resistance at the highest temperature that mammals, including humans, would experience in vivo. Thus, intrinsic defects in fatigue-resistant muscle fibres cannot explain the decreased physical performance at high temperatures.
Keywords AnimalsCalcium/metabolismElectric StimulationExercise/physiologyFever/physiopathologyHumansHydrogen Peroxide/pharmacologyMaleMiceMuscle Contraction/drug effects/physiologyMuscle Fatigue/drug effects/physiologyMuscle Fibers, Skeletal/drug effects/physiologyOxidative StressTemperatureTert-Butylhydroperoxide/pharmacology
PMID: 19675072
Full text
Article (Published version) (358 Kb) - document accessible for UNIGE members only Limited access to UNIGE
Research group Groupe Kayser Bengt (médecine du sport) (306)
(ISO format)
PLACE, Nicolas et al. High temperature does not alter fatigability in intact mouse skeletal muscle fibres. In: The Journal of Physiology, 2009, vol. 587, n° 19, p. 4717-24. doi: 10.1113/jphysiol.2009.176883 https://archive-ouverte.unige.ch/unige:25235

374 hits

0 download


Deposited on : 2013-01-09

Export document
Format :
Citation style :