Scientific article

Comparing metoclopramide electrotransport kinetics in vitro and in vivo

Published inEuropean journal of pharmaceutical sciences, vol. 41, no. 2, p. 353-359
Publication date2010

The purpose of this work was to investigate the transdermal iontophoretic delivery of metoclopramide and to determine (i) the dependence of electrotransport on current density and drug concentration, (ii) the relative contributions of electromigration and electroosmosis and (iii) the feasibility of administering therapeutic amounts of drug, using a drug-sparing iontophoretic configuration. Iontophoretic delivery of metoclopramide (MCL) across dermatomed porcine ear skin was investigated in vitro as a function of concentration (10, 20, 40, 80 and 100mM) and current density (0.1, 0.2 and 0.3mAcm(-2)) using vertical flow-through diffusion cells. In vivo studies were performed in Wistar rats (40mM MCL, 0.3mAcm(-2), 5h); the anodal and drug formulation compartments were separated by a salt bridge. Cumulative delivery in vitro after 7h of current application (40mM MCL; 0.3mAcm(-2)) in the absence of electrolyte was 624.45+/-99.45microgcm(-2) (flux - 2.55+/-0.35microgcm(-2)min(-1)). There was a linear relationship between flux and both current density and drug concentration. Co-iontophoresis of acetaminophen confirmed that electromigration was the major transport mechanism (accounting for approximately 80% of MCL delivery). Electroosmotic inhibition, albeit modest, was only observed at the highest MCL concentration (100mM). Although the delivery rate observed in vivo in male Wistar rats (1.21+/-0.55microgcm(-2)min(-1)) was lower than that observed in vitro, the results suggest that drug input rates would be sufficient to achieve therapeutic levels in humans using non-invasive transdermal iontophoresis.

  • Animals
  • Antiemetics/pharmacokinetics
  • Male
  • Metoclopramide/pharmacokinetics
  • Rats
  • Rats, Wistar
  • Swine
Citation (ISO format)
CAZARES DELGADILLO, Jennyfer et al. Comparing metoclopramide electrotransport kinetics in vitro and in vivo. In: European journal of pharmaceutical sciences, 2010, vol. 41, n° 2, p. 353–359. doi: 10.1016/j.ejps.2010.07.006
Main files (1)
Article (Accepted version)
ISSN of the journal0928-0987

Technical informations

Creation09/03/2012 1:46:00 PM
First validation09/03/2012 1:46:00 PM
Update time03/14/2023 5:40:21 PM
Status update03/14/2023 5:40:20 PM
Last indexation01/16/2024 12:11:44 AM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack