UNIGE document Scientific Article
previous document  unige:21577  next document
add to browser collection

Preparation and Spectroscopic Properties of Monolayer-Protected Silver Nanoclusters

Farrag, Mostafa
Thämer, Martin
Tschurl, Martin
Heiz, Ueli
Published in Journal of physical chemistry. C. 2012, vol. 116, no. 14, p. 8034-8043
Abstract Silver nanoclusters protected by 2-phenylethanethiol (1), 4-fluorothiophenol (2), and l-glutathione (3) ligands were successfully synthesized. The optical properties of the prepared silver nanoclusters were studied. The absorption signal of Ag@SCH2CH2Ph in toluene can be found at 469 nm, and Ag@SPhF in THF shows two absorption bands at 395 and 462 nm. Ag@SG in water absorbs at 478 nm. Mie theory in combination with the Drude model clearly indicates the peaks in the spectra originate from plasmonic transitions. In addition, the damping constant as well as the dielectric constant of the surrounding medium was determined. In addition, the CD spectra of silver nanoclusters protected by the three ligands (1–3) were also studied. As expected, only the clusters of type 3 gave rise to chiroptical activity across the visible and near-ultraviolet regions. The location and strength of the optical activity suggest an electronic structure of the metal that is highly sensitive to the chiral environment imposed by the glutathione ligand. The morphology and size of the prepared nanoclusters were analyzed by using transmission electron microscopy (TEM). TEM analysis showed that the particles of all three types of silver clusters were small than 5 nm, with an average size of around 2 nm. The analysis of the FTIR spectra elucidated the structural properties of the ligands binding to the nanoclusters. By comparing the IR absorption spectra of pure ligands with those of the protected silver nanoclusters, the disappearance of the S–H vibrational band (2535–2564 cm–1) in the protected silver nanoclusters confirmed the anchoring of ligands to the cluster surface through the sulfur atom. By elemental analysis and thermogravimetric analysis, the Ag/S ratio and, hence, the number of ligands surrounding a Ag atom could be determined.
Full text
Article (Published version) (491 Kb) - document accessible for UNIGE members only Limited access to UNIGE
Research group Groupe Bürgi
(ISO format)
FARRAG, Mostafa et al. Preparation and Spectroscopic Properties of Monolayer-Protected Silver Nanoclusters. In: Journal of physical chemistry. C, 2012, vol. 116, n° 14, p. 8034-8043. doi: 10.1021/jp210453v https://archive-ouverte.unige.ch/unige:21577

508 hits



Deposited on : 2012-06-13

Export document
Format :
Citation style :