Scientific article
OA Policy
English

Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations

Published inThe Journal of biological chemistry, vol. 286, no. 13, p. 11672-11684
Publication date2011
Abstract

Mitochondria extrude protons across their inner membrane to generate the mitochondrial membrane potential (ΔΨ(m)) and pH gradient (ΔpH(m)) that both power ATP synthesis. Mitochondrial uptake and efflux of many ions and metabolites are driven exclusively by ΔpH(m), whose in situ regulation is poorly characterized. Here, we report the first dynamic measurements of ΔpH(m) in living cells, using a mitochondrially targeted, pH-sensitive YFP (SypHer) combined with a cytosolic pH indicator (5-(and 6)-carboxy-SNARF-1). The resting matrix pH (∼7.6) and ΔpH(m) (∼0.45) of HeLa cells at 37 °C were lower than previously reported. Unexpectedly, mitochondrial pH and ΔpH(m) decreased during cytosolic Ca(2+) elevations. The drop in matrix pH was due to cytosolic acid generated by plasma membrane Ca(2+)-ATPases and transmitted to mitochondria by P(i)/H(+) symport and K(+)/H(+) exchange, whereas the decrease in ΔpH(m) reflected the low H(+)-buffering power of mitochondria (∼5 mm, pH 7.8) compared with the cytosol (∼20 mm, pH 7.4). Upon agonist washout and restoration of cytosolic Ca(2+) and pH, mitochondria alkalinized and ΔpH(m) increased. In permeabilized cells, a decrease in bath pH from 7.4 to 7.2 rapidly decreased mitochondrial pH, whereas the addition of 10 μm Ca(2+) caused a delayed and smaller alkalinization. These findings indicate that the mitochondrial matrix pH and ΔpH(m) are regulated by opposing Ca(2+)-dependent processes of stimulated mitochondrial respiration and cytosolic acidification.

Keywords
  • Adenosine Triphosphate/biosynthesis
  • Calcium/metabolism
  • Calcium-Transporting ATPases/metabolism
  • Cell Membrane/enzymology
  • Cytosol/metabolism
  • HeLa Cells
  • Humans
  • Hydrogen-Ion Concentration
  • Mitochondria/metabolism
  • Oxygen Consumption/physiology
  • Proton-Motive Force/physiology
Citation (ISO format)
POBURKO, Damon, SANTO DOMINGO, Jaime, DEMAUREX, Nicolas. Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. In: The Journal of biological chemistry, 2011, vol. 286, n° 13, p. 11672–11684. doi: 10.1074/jbc.M110.159962
Main files (1)
Article (Published version)
accessLevelPublic
Identifiers
Journal ISSN0021-9258
722views
426downloads

Technical informations

Creation06/04/2012 8:05:00 PM
First validation06/04/2012 8:05:00 PM
Update time03/14/2023 5:37:11 PM
Status update03/14/2023 5:37:11 PM
Last indexation10/29/2024 8:15:47 PM
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack