UNIGE document Scientific Article
previous document  unige:19462  next document
add to browser collection

Experimental constraints on the outgassing dynamics of basaltic magmas

Azzopardi, B. J.
Phillips, J. C.
Ripepe, M.
Published in Journal of Geophysical Research. 2012, vol. 117, no. B3
Abstract The dynamics of separated two-phase flow of basaltic magmas in cylindrical conduits has been explored combining large-scale experiments and theoretical studies.Experiments consisted of the continuous injection of air into water or glucose syrup in a 0.24 m diameter, 6.5 m long bubble column. The model calculates vesicularity and pressure gradient for a range of gas superficial velocities (volume flow rates/pipe area, 10^-2–10^2 m/s), conduit diameters (100–2 m), and magma viscosities (3–300 Pa s). The model is calibrated with the experimental results to extrapolate key flow parameters such as Co (distribution parameter) and Froude number, which control the maximum vesicularity of the magma in the column, and the gas rise speed of gas slugs. It predicts that magma vesicularity increases with increasing gas volume flow rate and decreases with increasing conduit diameter, until a threshold value (45 vol.%), which characterizes churn and annular flow regimes. Transition to annular flow regimes is expected to occur at minimum gas volume flow rates of 103–104 m3/s. The vertical pressure gradient decreases with increasing gas flow rates and is controlled by magma vesicularity (in bubbly flows) or the length and spacing of gas slugs. This study also shows that until conditions for separated flow are met, increases in magma viscosity favor stability of slug flow over bubbly flow but suggests coexistence between gas slugs and small bubbles, which contribute to a small fraction of the total gas outflux. Gas flow promotes effective convection of the liquid, favoring magma homogeneity and stable conditions.
Full text
Research group Physical Volcanology and Geological Risk
(ISO format)
PIOLI, Laura et al. Experimental constraints on the outgassing dynamics of basaltic magmas. In: Journal of Geophysical Research, 2012, vol. 117, n° B3. https://archive-ouverte.unige.ch/unige:19462

293 hits



Deposited on : 2012-04-19

Export document
Format :
Citation style :