Automated pulmonary nodule classification from low-dose CT images using ERBNet : an ensemble learning approach
ContributorsAhmadyar, Yashar
; Kamali-Asl, Alireza; Samimi, Rezvan; Arabi, Hossein; Zaidi, Habib
Published inMedical & biological engineering & computing, vol. 63, no. 9, p. 2767-2779
First online date2025-04-15
Abstract
Keywords
- Classification
- Computed tomography
- Deep learning
- Low dose
- Lung cancer
- Algorithms
- Deep Learning
- Ensemble Learning
- Humans
- Image Processing, Computer-Assisted / methods
- Lung Neoplasms / diagnostic imaging
- Radiation Dosage
- Radiographic Image Interpretation, Computer-Assisted / methods
- Solitary Pulmonary Nodule / classification
- Solitary Pulmonary Nodule / diagnostic imaging
- Tomography, X-Ray Computed / methods
Affiliation entities
Research groups
Citation (ISO format)
AHMADYAR, Yashar et al. Automated pulmonary nodule classification from low-dose CT images using ERBNet : an ensemble learning approach. In: Medical & biological engineering & computing, 2025, vol. 63, n° 9, p. 2767–2779. doi: 10.1007/s11517-025-03358-2
Main files (1)
Article (Published version)
Secondary files (1)
Identifiers
- PID : unige:184554
- DOI : 10.1007/s11517-025-03358-2
- PMID : 40232605
- PMCID : PMC12402046
Additional URL for this publicationhttps://link.springer.com/10.1007/s11517-025-03358-2
Journal ISSN0140-0118
