UNIGE document Doctoral Thesis
previous document  unige:18424  next document
add to browser collection
Title

Holomorphic spinor observables and interfaces in the critical ising model

Author
Director
Defense Thèse de doctorat : Univ. Genève, 2011 - Sc. 4394 - 2011/12/19
Abstract We generalize Smirnov's discrete holomorphic observables in the critical Ising model to the case of multiply connected domains. Our observables are spinors, that is, they are multiplicatively multi-valued with monodromy -1. We prove their convergence to conformally covariant scaling limits as the mesh size tends to zero. As applications, we get partial results towards the proof of conformal invariance of the spin correlations, and develop a fairly general theory of scaling limits of multiple Ising interfaces in multiply connected domains.
Keywords Conformal invarianceSchramm-Loewner evolutionIsing modelCritical phenomenaLattice models
Identifiers
URN: urn:nbn:ch:unige-184246
Full text
Thesis (1.6 MB) - public document Free access
Structures
Citation
(ISO format)
IZYUROV, Konstantin. Holomorphic spinor observables and interfaces in the critical ising model. Université de Genève. Thèse, 2011. doi: 10.13097/archive-ouverte/unige:18424 https://archive-ouverte.unige.ch/unige:18424

920 hits

548 downloads

Update

Deposited on : 2012-02-20

Export document
Format :
Citation style :