A collection of Machine Learning Tools to accelerate the search for New Physics
ContributorsSengupta, Debajyoti
DirectorsGolling, Tobias
Number of pages211
Imprimatur date2025-02-10
Defense date2024-10-28
Abstract
Keywords
- LHC
- High Energy Physics
- New Physics
- Searches
- Weakly Supervised Anomaly Detection
- Machine Learning
- Generative Modelling
- Diffusion
- Transformers
- Astrophysics
- Cosmology
Affiliation entities
Research groups
Citation (ISO format)
SENGUPTA, Debajyoti. A collection of Machine Learning Tools to accelerate the search for New Physics. Doctoral Thesis, 2025. doi: 10.13097/archive-ouverte/unige:183550
Main files (1)
Thesis
Secondary files (1)
Identifiers
- PID : unige:183550
- DOI : 10.13097/archive-ouverte/unige:183550
- URN : urn:nbn:ch:unige-1835508
- Thesis number : Sc. 5884
