Scientific article
English

The BONSAI (Brain and Optic Nerve Study with Artificial Intelligence) deep learning system can accurately identify pediatric papilledema on standard ocular fundus photographs

Published inJournal of AAPOS, vol. 28, no. 1, 103803
Publication date2024-02
First online date2024-01-10
Abstract

Background: Pediatric papilledema often reflects an underlying severe neurologic disorder and may be difficult to appreciate, especially in young children. Ocular fundus photographs are easy to obtain even in young children and in nonophthalmology settings. The aim of our study was to ascertain whether an improved deep-learning system (DLS), previously validated in adults, can accurately identify papilledema and other optic disk abnormalities in children.

Methods: The DLS was tested on mydriatic fundus photographs obtained in a multiethnic pediatric population (<17 years) from three centers (Atlanta-USA; Bucharest-Romania; Singapore). The DLS's multiclass classification accuracy (ie, normal optic disk, papilledema, disks with other abnormality) was calculated, and the DLS's performance to specifically detect papilledema and normal disks was evaluated in a one-vs-rest strategy using the AUC, sensitivity and specificity, with reference to expert neuro-ophthalmologists.

Results: External testing was performed on 898 fundus photographs: 447 patients; mean age, 10.33 (231 patients ≤10 years of age; 216, 11-16 years); 558 normal disks, 254 papilledema, 86 other disk abnormalities. Overall multiclass accuracy of the DLS was 89.6% (range, 87.8%-91.6%). The DLS successfully distinguished "normal" from "abnormal" optic disks (AUC 0.99 [0.98-0.99]; sensitivity, 87.3% [84.9%-89.8%]; specificity, 98.5% [97.6%-99.6%]), and "papilledema" from "normal and other" (AUC 0.99 [0.98-1.0]; sensitivity, 98.0% [96.8%-99.4%]; specificity, 94.1% (92.4%-95.9%)].

Conclusions: Our DLS reliably distinguished papilledema from normal optic disks and other disk abnormalities in children, suggesting it could be utilized as a diagnostic aid for the assessment of optic nerve head appearance in the pediatric age group.

Keywords
  • Adult
  • Artificial Intelligence
  • Brain
  • Child
  • Child, Preschool
  • Deep Learning
  • Fundus Oculi
  • Humans
  • Optic Nerve
  • Papilledema / diagnosis
Citation (ISO format)
LIN, Mung Yan et al. The BONSAI (Brain and Optic Nerve Study with Artificial Intelligence) deep learning system can accurately identify pediatric papilledema on standard ocular fundus photographs. In: Journal of AAPOS, 2024, vol. 28, n° 1, p. 103803. doi: 10.1016/j.jaapos.2023.10.005
Main files (1)
Article (Published version)
accessLevelRestricted
Secondary files (1)
Identifiers
Journal ISSN1091-8531
88views
0downloads

Technical informations

Creation29/04/2024 09:08:35
First validation10/06/2024 09:44:56
Update time10/06/2024 09:44:56
Status update10/06/2024 09:44:56
Last indexation01/11/2024 10:49:39
All rights reserved by Archive ouverte UNIGE and the University of GenevaunigeBlack