Differential privacy preserved federated learning for prognostic modeling in COVID‐19 patients using large multi‐institutional chest CT dataset
ContributorsShiri Lord, Isaac
; Salimi, Yazdan
; Sirjani, Nasim; Razeghi, Behrooz
; Bagherieh, Sara; Pakbin, Masoumeh; Mansouri, Zahra; Hajianfar, Ghasem; Avval, Atlas Haddadi; Askari, Dariush; Ghasemian, Mohammadreza; Sandoughdaran, Saleh; Sohrabi, Ahmad; Sadati, Elham; Livani, Somayeh; Iranpour, Pooya; Kolahi, Shahriar; Khosravi, Bardia; Bijari, Salar; Sayfollahi, Sahar; Atashzar, Mohammad Reza; Hasanian, Mohammad; Shahhamzeh, Alireza; Teimouri, Arash; Goharpey, Neda; Shirzad‐Aski, Hesamaddin; Karimi, Jalal; Radmard, Amir Reza; Rezaei‐Kalantari, Kiara; Oghli, Mostafa Ghelich; Oveisi, Mehrdad; Vafaei Sadr, Alireza; Voloshynovskyy, Svyatoslav; Zaidi, Habib
Published inMedical physics, mp.16964
Publication date2024-02-09
First online date2024-02-09
Abstract
Keywords
- COVID-19
- CT
- Deep learning
- Federated learning
- Privacy
- Prognosis
Research groups
Citation (ISO format)
SHIRI LORD, Isaac et al. Differential privacy preserved federated learning for prognostic modeling in COVID‐19 patients using large multi‐institutional chest CT dataset. In: Medical physics, 2024, p. mp.16964. doi: 10.1002/mp.16964
Main files (1)
Article (Published version)
Identifiers
- PID : unige:177410
- DOI : 10.1002/mp.16964
- PMID : 38335175
Additional URL for this publicationhttps://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.16964
Journal ISSN0094-2405