Strategies for deep learning‐based attenuation and scatter correction of brain 18 F‐FDG PET images in the image domain
ContributorsJahangir, Reza; Kamali‐Asl, Alireza; Arabi, Hossein; Zaidi, Habib
Published inMedical physics, vol. 51, no. 2, p. 870-880
Publication date2024-02
First online date2024-01-10
Abstract
Keywords
- PET
- Attenuation correction
- Deep learning
- Quantitative imaging
- Radiomics
Research groups
Funding
- Swiss National Science Foundation - Towards patient-specific hybrid whole-body PET parametric imaging [176052]
- Private Foundation of Geneva University Hospitals - [RC-06−01]
Citation (ISO format)
JAHANGIR, Reza et al. Strategies for deep learning‐based attenuation and scatter correction of brain 18 F‐FDG PET images in the image domain. In: Medical physics, 2024, vol. 51, n° 2, p. 870–880. doi: 10.1002/mp.16914
Main files (1)
Article (Published version)
Secondary files (1)
Identifiers
- PID : unige:174989
- DOI : 10.1002/mp.16914
- PMID : 38197492
Journal ISSN0094-2405